上海大学学报(自然科学版)

• 机电与自动化 • 上一篇    下一篇

凸体的lp范数

王治文,袁俊,冷岗松   

  1. 上海大学 理学院,上海 200444
  • 收稿日期:2006-07-05 修回日期:1900-01-01 出版日期:2007-06-30 发布日期:2007-06-30
  • 通讯作者: 冷岗松

The lp-Norm of Convex Bodies

WANG Zhi-wen,YUAN Jun,LENG Gang-song   

  1. School of Sciences, Shanghai University, Shanghai 200444, China
  • Received:2006-07-05 Revised:1900-01-01 Online:2007-06-30 Published:2007-06-30
  • Contact: LENG Gang-song

摘要: 将凸体的l范数推广到Lp空间,引入lp范数并证明在Lowner椭球(包含凸体的最小椭球)是球的所有凸体中,八面体具有最大的lp范数.同时还给出了lp范数的Blaschke-Sanatlaó型不等式.

关键词: lp范数, 不等式, 内径, 凸体, 外径

Abstract: The article extends the l norm of the convex body to the Lp space. We introduce the lp norm and proof that if convex body's Lowner ellipsoid (the minimal volume ellipsoid containing the convex) is the Euclidean unit ball, and the octahedron has the maximal lp norm. We also give the BlaschkeSanatlaó type inequality of lp norm.

Key words: circumradius, inequality, inradius, lp norm, convex body

中图分类号: