上海大学学报(自然科学版) ›› 2020, Vol. 26 ›› Issue (6): 927-936.doi: 10.12066/j.issn.1007-2861.2123
收稿日期:
2019-01-25
出版日期:
2020-12-31
发布日期:
2020-12-29
通讯作者:
刘立起
E-mail:llq@shu.edu.cn
作者简介:
刘立起(1981—), 男, 讲师, 博士, 研究方向为碳纤维复合材料. E-mail: llq@shu.edu.cn
ZHANG Yaping, SHI Lei, GUO Xiaofeng, LIU Liqi()
Received:
2019-01-25
Online:
2020-12-31
Published:
2020-12-29
Contact:
LIU Liqi
E-mail:llq@shu.edu.cn
摘要:
采用不同制备工艺制备氧化石墨烯 (graphene oxide, GO)-碳纤维 (carbomfibre, CF)/环氧树脂 (epoxy, EP) 复合材料,探讨了 3 种界面结合机理,对比分析了不同的界面结合方式对氧化石墨烯-碳纤维/环氧树脂复合材料界面剪切强度 (interfacialshear strength, IFSS)、弯曲性能及层间剪切强度 (interlaminar shearstrength, ILSS) 的影响. 研究结果表明:氧化石墨烯对复合材料界面的作用主要是增强界面处机械互锁能力,以及少量化学键形成产生的作用力;氧化石墨烯吸附在碳纤维表面再与环氧树脂形成的界面结合方式可使复合材料界面剪切强度提升 66.97%,弯曲强度提升 31.84%, 层间剪切强度提升 10%. 可见,氧化石墨烯利用率高, 工艺简单, 有利于实现工业生产.
中图分类号:
张亚萍, 石磊, 郭小凤, 刘立起. 界面结合方式对氧化石墨烯-碳纤维/环氧树脂复合材料性能的影响[J]. 上海大学学报(自然科学版), 2020, 26(6): 927-936.
ZHANG Yaping, SHI Lei, GUO Xiaofeng, LIU Liqi. Effects of different interfaces on mechanical properties of graphene oxide-carbon fibre/epoxy resin composites[J]. Journal of Shanghai University(Natural Science Edition), 2020, 26(6): 927-936.
[1] |
Zhang R L, Gao B, Du W T, et al. Enhanced mechanical properties of multiscale carbon fiber/epoxy composites by fiber surface treatment with graphene oxide/polyhedral oligomeric silsesquioxane[J]. Composites: Part A, 2016,84:455-463.
doi: 10.1016/j.compositesa.2016.02.021 |
[2] | 李红. 碳纤维增强环氧树脂基复合材料的性能研究[J]. 中国胶粘剂, 2009,18(3):21-25. |
[3] | 许丽丹, 王澜. 碳纤维增强树脂基复合材料的应用研究[J]. 塑料制造, 2007(S1):81-85. |
[4] | 陈立军, 武凤琴, 张欣宇, 等. 环氧树脂/碳纤维复合材料的成型工艺与应用[J]. 工程塑料应用, 2007,35(10):77-80. |
[5] |
Sun Y, Wang S, Li M, et al. Improvement of out-of-plane thermal conductivity of composite laminate by electrostatic flocking[J]. Materials and Design, 2018,144:263-270.
doi: 10.1016/j.matdes.2018.02.031 |
[6] |
Juraeva M, Ryu K J, Noh S H, et al. Lightweight material for the speed reducer housing of a car chassis[J]. Journal of Mechanical Science and Technology, 2017,31(7):3219-3224.
doi: 10.1007/s12206-017-0611-5 |
[7] |
Rondina F, Taddia S, Mazzocchetti L, et al. Development of full carbon wheels for sport cars with high-volume technology[J]. Composite Structures, 2018,192:368-378.
doi: 10.1016/j.compstruct.2018.02.083 |
[8] | 陈平, 王德中. 环氧树脂[M]. 北京: 化学工业出版社, 1999: 215-244. |
[9] | 孙曼灵, 吴良义. 环氧树脂应用原理与技术[M]. 北京: 机械工业出版社, 2002: 1-10. |
[10] |
Pathak A K, Borah M, Gupta A, et al. Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites[J]. Composites Science and Technology, 2016,135:28-38.
doi: 10.1016/j.compscitech.2016.09.007 |
[11] |
Lubineau G, Rahaman A. A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements[J]. Carbon, 2012,50(7):2377-2395.
doi: 10.1016/j.carbon.2012.01.059 |
[12] |
Yan W, Liu H Y, Mai Y W. Numerical study on the mode Ⅰ delamination toughness of $z$-pinned laminates[J]. Composites Science and Technology, 2003,63(10):1481-1493.
doi: 10.1016/S0266-3538(03)00167-2 |
[13] |
Pathak A K, Borah M, Gupta A, et al. Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites[J]. Composites Science and Technology, 2016,135:28-38.
doi: 10.1016/j.compscitech.2016.09.007 |
[14] | 陈建剑, 俞科静, 钱坤, 等. 氧化石墨烯改性环氧树脂/碳纤维复合材料拉伸性能的研究[J]. 化工新型材料, 2012,40(9):63-65. |
[15] |
Ashori A, Rahmani H, Bahrami R. Preparation and characterization of functionalized graphene oxide/carbon fiber/epoxy nanocomposites[J]. Polymer Testing, 2015,48(3):82-88.
doi: 10.1016/j.polymertesting.2015.09.010 |
[16] | Han X, Zhao Y, Sun J M, et al. Effect of graphene oxide addition on the interlaminar shear property of carbon fiber-reinforced epoxy composites[J]. Carbon, 2017,117:489. |
[17] |
Deng C, Jiang J, Liu F, et al. Influence of graphene oxide coatings on carbon fiber by ultrasonically assisted electrophoretic deposition on its composite interfacial property[J]. Surface and Coatings Technology, 2015,272(8):176-181.
doi: 10.1016/j.surfcoat.2015.04.008 |
[18] |
Zhang R L, Gao B, Ma Q H, et al. Directly grafting graphene oxide onto carbon fiber and the effect on the mechanical properties of carbon fiber composites[J]. Materials and Design, 2016,93:364-369.
doi: 10.1016/j.matdes.2016.01.003 |
[19] |
Li Y B, Peng Q Y, He X D, et al. Synjournal and characterization of a new hierarchical reinforcement by chemically grafting graphene oxide onto carbon fibers[J]. Journal of Materials Chemistry, 2012,22(36):18748-18752.
doi: 10.1039/c2jm32596a |
[20] |
Chen L, Jin H, Xu Z, et al. A design of gradient interphase reinforced by silanized graphene oxide and its effect on carbon fiber/epoxy interface[J]. Materials Chemistry and Physics, 2014,145(1/2):186-196.
doi: 10.1016/j.matchemphys.2014.02.001 |
[21] |
Jiang D, Liu L, Wu G, et al. Mechanical properties of carbon fiber composites modified with graphene oxide in the interphase[J]. Polymer Composites, 2017,38(11):2425-2432.
doi: 10.1002/pc.v38.11 |
[22] |
Wang C, Ge H, Ma X, et al. Effect of graphene oxide mixed epoxy on mechanical properties of carbon fiber/acrylonitrile-butadiene-styrene composites[J]. Journal of Nanoscience and Nanotechnology, 2018,18(4):2513-2520.
doi: 10.1166/jnn.2018.14335 pmid: 29442921 |
[23] | 唐梦龙, 于思荣, 孙伟松, 等. 氧化石墨烯/环氧树脂复合材料的制备与性能[J]. 功能材料, 2016,47(S1):143-147. |
[24] | 王亚平. 石墨烯/聚酰亚胺纳米复合材料的制备与性能研究[D]. 上海: 东华大学, 2013. |
[25] |
Li M, Gu Y, Liu Y, et al. Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers[J]. Carbon, 2013,52:109-121.
doi: 10.1016/j.carbon.2012.09.011 |
[26] | 杨序纲. 复合材料界面[M]. 北京: 化学工业出版社, 2010: 8-9. |
[1] | 狄勤丰, 王楠, 陈锋, 王文昌, 牛新明, 张金成. 油井管螺纹接头力学特性的研究进展[J]. 上海大学学报(自然科学版), 2020, 26(2): 163-180. |
[2] | 刘丽, 涂多想. HSP 含量对 EVA 发泡材料微观结构和力学性能的影响[J]. 上海大学学报(自然科学版), 2020, 26(2): 207-215. |
[3] | 王瑞, 胡亦杨, 蒋晓濛, 赵攀登, 程伶俐, 焦正. Ag/AgCl/PDA-rGO 无酶葡萄糖传感器的构建[J]. 上海大学学报(自然科学版), 2019, 25(6): 943-949. |
[4] | 强小妮, 陈业新, 张建涛. 环境对高熵合金Al$_{\textbf{0.1}}$CoCrFeNi力学性能的影响[J]. 上海大学学报(自然科学版), 2019, 25(2): 206-214. |
[5] | 高宇芳, 彭雨晴, 孙宁霞, 李爱军, 白瑞成. 非刻蚀无钯活化化学镀铜 Kevlar 纤维的制备工艺及性能[J]. 上海大学学报(自然科学版), 2019, 25(1): 75-83. |
[6] | 马奇利, 张翠霞, 王晗, 蒋瑾, 吕卫帮. 温度对碳纳米管纤维/环氧树脂界面剪切强度的影响[J]. 上海大学学报(自然科学版), 2018, 24(6): 961-967. |
[7] | 刘丽, 诸慧杰, 涂多想, 郝新敏, 黄杰. EVA/HSP 复合发泡材料的制备和性能[J]. 上海大学学报(自然科学版), 2018, 24(5): 782-790. |
[8] | 凤亚军, 王兴庆. Y$_{2}$O$_{3}$对氧化锆陶瓷组织和性能的影响[J]. 上海大学学报(自然科学版), 2018, 24(1): 56-65. |
[9] | 李智1,2, 胡丽娟1,2, 谢耀平1,2, 赵世金1,2. 纳米Cu析出相及晶界对微合金化钢力学性能的影响[J]. 上海大学学报(自然科学版), 2017, 23(3): 432-442. |
[10] | 刘立起, 王旭, 谢旺, 俞鸣明, 方琳, 李红, 杨敏, 肖依, 任慕苏, 孙晋良. 芳砜纶纤维/聚四氟乙烯复合材料的性能[J]. 上海大学学报(自然科学版), 2017, 23(2): 185-191. |
[11] | 张智梅, 张振波, 黄海涛, 张振凯, 熊浩. 表层嵌贴CFRP 板加固RC 梁的抗弯性能[J]. 上海大学学报(自然科学版), 2017, 23(2): 298-307. |
[12] | 侯锡贝, 陈业新. 硼含量对(Fe,Ni)3V 合金组织和力学性能的作用[J]. 上海大学学报(自然科学版), 2015, 21(5): 648-656. |
[13] | 张莉. 索-钢/铝合金组合结构初始态确定及静力分析[J]. 上海大学学报(自然科学版), 2015, 21(5): 631-639. |
[14] | 段家真1,2, 余若冰1,2, 胡林1,2, 焦正3. 新型聚苯醚改性环氧树脂[J]. 上海大学学报(自然科学版), 2015, 21(1): 38-45. |
[15] | 胡林1, 余若冰1, 段家真1, 焦正2. 含磷含氮酚醛树脂的合成与性能[J]. 上海大学学报(自然科学版), 2015, 21(03): 376-383. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||