上海大学学报(自然科学版) ›› 2019, Vol. 25 ›› Issue (3): 365-374.doi: 10.12066/j.issn.1007-2861.2141
所属专题: 精准与转化医学
收稿日期:
2019-05-27
出版日期:
2019-06-30
发布日期:
2019-06-24
通讯作者:
周斌
E-mail:zhoubin@sibs.ac.cn
作者简介:
周斌, 研究员,博士生导师. 国家自然科学基金杰出青年科学基金获得者,中科院“百人计划”,国家万人计划领军人才。基金资助:
Received:
2019-05-27
Online:
2019-06-30
Published:
2019-06-24
Contact:
Bin ZHOU
E-mail:zhoubin@sibs.ac.cn
摘要:
心肌细胞作为一种终末分化的细胞最初被认为不具备增殖的能力, 然而越来越多的证据表明, 成体的哺乳动物心脏中心肌细胞是以一定的比例进行更新换代的. 相关研究使用了不同的巧妙的方法, 包括同位素的掺入以及遗传工具小鼠的使用. 心肌细胞的增殖受到复杂的分子网络的调控, 同时也受到外界环境及内部微环境的调控. 心肌细胞自身具有的特性也是影响心肌细胞增殖的关键.
中图分类号:
刘秀秀, 周斌. 成体哺乳动物心肌细胞增殖及其调控[J]. 上海大学学报(自然科学版), 2019, 25(3): 365-374.
LIU Xiuxiu , ZHOU Bin. The proliferation and regulation of a adult mammalian cardiomyocytes[J]. Journal of Shanghai University(Natural Science Edition), 2019, 25(3): 365-374.
[1] |
Narula J, Haider N, Virmani R , et al. Apoptosis in myocytes in end-stage heart failure[J]. New Engl J Med, 1996,335(16):1182-1189.
doi: 10.1056/NEJM199610173351603 pmid: 8815940 |
[2] |
Mark K K K, Soonpaa H, Pajak L , et al. Cardiomyocyte DNA synjournal and binucleation during murine development[J]. Am J Physiol Heart Circ Physiol, 1996,271(5):H2183-H2189.
doi: 10.3389/fcell.2016.00137 pmid: 28018900 |
[3] |
Hsieh P C, Segers V F, Davis M E , et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury[J]. Nat Med, 2007,13(8):970-974.
doi: 10.1038/nm1618 pmid: 17660827 |
[4] |
Bergmann O, Bhardwaj R D, Bernard S , et al. Evidence for cardiomyocyte renewal in humans[J]. Science, 2009,324(5923):98-102.
doi: 10.1126/science.1164680 pmid: 19342590 |
[5] |
Bergmann O, Zdunek S, Felker A , et al. Dynamics of cell generation and turnover in the human heart[J]. Cell, 2015,161(7):1566-1575.
doi: 10.1016/j.cell.2015.05.026 pmid: 26073943 |
[6] |
Beltrami A P, Urbanek K, Kajstura J , et al. Evidence that human cardiac myocytes divide after myocardial infarction[J]. New Engl J Med, 2001,344(23):1750-1757.
doi: 10.1056/NEJM200106073442303 pmid: 11396441 |
[7] |
Kajstura J, Urbanek K, Perl S , et al. Cardiomyogenesis in the adult human heart[J]. Circ Res, 2010,107(2):305-315.
doi: 10.1161/CIRCRESAHA.110.223024 pmid: 20522802 |
[8] |
Steinhauser M L, Bailey A P, Senyo S E , et al. Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism[J]. Nature, 2012,481(7382):516-519.
doi: 10.1038/nature10734 |
[9] |
Senyo S E, Steinhauser M L, Pizzimenti C L , et al. Mammalian heart renewal by pre-existing cardiomyocytes[J]. Nature, 2013,493(7432):433-436.
doi: 10.1038/nature11682 |
[10] |
Zong H, Espinosa J S, Su H H , et al. Mosaic analysis with double markers in mice[J]. Cell, 2005,121(3):479-492.
doi: 10.1016/j.cell.2005.02.012 pmid: 15882628 |
[11] |
Ali S R, Hippenmeyer S, Saadat L V , et al. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice[J]. Proc Natl Acad Sci U S A, 2014,111(24):8850-8855.
doi: 10.1073/pnas.1408233111 pmid: 24876275 |
[12] |
Sereti K I, Nguyen N B, Kamran P , et al. Analysis of cardiomyocyte clonal expansion during mouse heart development and injury[J]. Nature Communications, 2018,9(1):754.
doi: 10.1038/s41467-018-02891-z pmid: 29467410 |
[13] |
Basak O, Van De Born M, Korving J, et al. Mapping early fate determination in Lgr5$^{+}$ crypt stem cells using a novel Ki67-RFP allele[J]. EMBO J, 2014,33(18):2057-2068.
doi: 10.15252/embj.201488017 |
[14] |
Basak O, Krieger T G, Muraro M J , et al. Troy$^{+}$ brain stem cells cycle through quiescence and regulate their number by sensing niche occupancy[J]. Proc Natl Acad Sci U S A, 2018,115(4):E610-E619.
doi: 10.1073/pnas.1715911114 pmid: 29311336 |
[15] |
Kretzschmar K, Post Y, Bannier-Helaouet M , et al. Profiling proliferative cells and their progeny in damaged murine hearts[J]. Proc Natl Acad Sci U S A, 2018,115(52):E12245-E12254.
doi: 10.1073/pnas.1805829115 pmid: 30530645 |
[16] |
He L, Li Y, Li Y , et al. Enhancing the precision of genetic lineage tracing using dual recombinases[J]. Nat Med, 2017,23(12):1488-1498.
doi: 10.1038/nm.4437 pmid: 29131159 |
[17] |
Li Y, He L, Huang X , et al. Genetic lineage tracing of nonmyocyte population by dual recombinases[J]. Circulation, 2018,138(8):793-805.
doi: 10.1161/CIRCULATIONAHA.118.034250 pmid: 29700121 |
[18] |
Naqvi N, Li M, Calvert J W , et al. A proliferative burst during preadolescence establishes the final cardiomyocyte number[J]. Cell, 2014,157(4):795-807.
doi: 10.1016/j.cell.2014.03.035 |
[19] |
Soonpaa M H, Zebrowski D C, Platt C , et al. Cardiomyocyte cell-cycle activity during preadolescence[J]. Cell, 2015,163(4):781-782.
doi: 10.1016/j.cell.2015.10.037 pmid: 26544927 |
[20] |
Alkass K, Panula J, Westman M , et al. No evidence for cardiomyocyte number expansion in preadolescent mice[J]. Cell, 2015,163(4):1026-1036.
doi: 10.1016/j.cell.2015.10.035 pmid: 26544945 |
[21] |
Chaudhry H W, Dashoush N H, Tang H , et al. Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium[J]. J Biol Chem, 2004,279(34):35858-35866.
doi: 10.1074/jbc.M404975200 pmid: 15159393 |
[22] |
Cheng R K, Asai T, Tang H , et al. Cyclin A2 induces cardiac regeneration after myocardial infarction and prevents heart failure[J]. Circulation Research, 2007,100(12):1741-1748.
doi: 10.1161/CIRCRESAHA.107.153544 pmid: 17495221 |
[23] | Shapiro S D, Ranjan A K, Kawase Y , et al. Cyclin A2 induces cardiac regeneration after myocardial infarction through cytokinesis of adult cardiomyocytes [J]. Sci Transl Med, 2014, 6(224): 224ra27. |
[24] |
Mohamed T M A, Ang Y S, Radzinsky E , et al. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration[J]. Cell, 2018,173(1):104-116.
doi: 10.1016/j.cell.2018.02.014 pmid: 29502971 |
[25] |
Zhang D, Wang Y, Lu P , et al. REST regulates the cell cycle for cardiac development and regeneration[J]. Nature Communications, 2017,8(1):1979.
doi: 10.1038/s41467-017-02210-y pmid: 29215012 |
[26] |
Pan D J . The hippo signaling pathway in development and cancer[J]. Developmental Cell, 2010,19(4):491-505.
doi: 10.1016/j.devcel.2010.09.011 |
[27] |
Zhao B, Tumaneng K, Guan K L . The hippo pathway in organ size control, tissue regeneration and stem cell self-renewal[J]. Nat Cell Biol, 2011,13(8):877-883.
doi: 10.1038/ncb2303 pmid: 21808241 |
[28] |
Heallen T, Zhang M, Wang J , et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size[J]. Science, 2011,332(6028):458-461.
doi: 10.1126/science.1201182 |
[29] |
Xin M, Kim Y, Sutherland L B , et al. Hippo pathway effector Yap promotes cardiac regeneration[J]. Proc Natl Acad Sci USA, 2013,110(34):13839-13844.
doi: 10.1073/pnas.1313192110 pmid: 23918388 |
[30] |
Lin Z, Von Gise A, Zhou P , et al. Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model[J]. Circ Res, 2014,115(3):354-363.
doi: 10.1161/CIRCRESAHA.115.303632 |
[31] |
Monroe T O, Hill M C, Morikawa Y , et al. YAP partially reprograms chromatin accessibility to directly induce adult cardiogenesis in vivo[J]. Dev Cell, 2019,48(6):765-779.
doi: 10.1016/j.devcel.2019.01.017 pmid: 30773489 |
[32] |
Xiang F L, Guo M, Yutzey K E . Overexpression of Tbx20 in adult cardiomyocytes promotes proliferation and improves cardiac function after myocardial infarction[J]. Circulation, 2016,133(11):1081-1092.
doi: 10.1161/CIRCULATIONAHA.115.019357 pmid: 26841808 |
[33] |
Hang C T, Yang J, Han P , et al. Chromatin regulation by Brg1 underlies heart muscle development and disease[J]. Nature, 2010,466(7302):62-67.
doi: 10.1038/nature09130 pmid: 20596014 |
[34] |
D'Uva G, Aharonov A, Lauriola M, et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation[J]. Nat Cell Biol, 2015,17(5):627-638.
doi: 10.1038/ncb3149 pmid: 25848746 |
[35] |
Bersell K, Arab S, Haring B , et al. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury[J]. Cell, 2009,138(2):257-270.
doi: 10.1016/j.cell.2009.04.060 pmid: 19632177 |
[36] |
Mahmoud A I, Kocabas F, Muralidhar S A , et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest[J]. Nature, 2013,497(7448):249-253.
doi: 10.1038/nature12054 pmid: 23594737 |
[37] |
Van Rooij E . The art of microRNA research[J]. Circ Res, 2011,108(2):219-234.
doi: 10.1161/CIRCRESAHA.110.227496 |
[38] |
Farh K K H, Grimson A, Jan C , et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution[J]. Science, 2005,310(5755):1817-1821.
doi: 10.1126/science.1121158 pmid: 16308420 |
[39] |
Eulalio A, Mano M, Dal Ferro M , et al. Functional screening identifies miRNAs inducing cardiac regeneration[J]. Nature, 2012,492(7429):376-381.
doi: 10.1038/nature11739 |
[40] |
Giacca M, Zacchigna S . Harnessing the microRNA pathway for cardiac regeneration[J]. J Mol Cell Cardiol, 2015,89(PtA):68-74.
doi: 10.1016/j.yjmcc.2015.09.017 pmid: 26431632 |
[41] |
Aguirre A, Montserrat N, Zacchigna S , et al. In vivo activation of a conserved microRNA program induces mammalian heart regeneration[J]. Cell Stem Cell, 2014,15(5):589-604.
doi: 10.1016/j.stem.2014.10.003 |
[42] |
Diez-Cunado M, Wei K, Bushway P J , et al. MiRNAs that induce human cardiomyocyte proliferation converge on the hippo pathway[J]. Cell Rep, 2018,23(7):2168-2174.
doi: 10.1016/j.celrep.2018.04.049 pmid: 29768213 |
[43] |
Gabisonia K, Prosdocimo G, Aquaro G D , et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs[J]. Nature, 2019,569(7756):418-422.
doi: 10.1038/s41586-019-1191-6 pmid: 31068698 |
[44] |
Parmar K, Mauch P, Vergilio J A , et al. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia[J]. Proc Natl Acad Sci U S A, 2007,104(13):5431-5436.
doi: 10.1073/pnas.0701152104 pmid: 17374716 |
[45] |
Mazumdar J, O'Brien W T, Johnson R S, et al. O2 regulates stem cells through Wnt/beta-catenin signalling[J]. Nat Cell Biol, 2010,12(10):1007-1013.
doi: 10.1038/ncb2102 pmid: 20852629 |
[46] |
Kimura W, Xiao F, Canseco D C , et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart[J]. Nature, 2015,523(7559):226-230.
doi: 10.1038/nature14582 pmid: 26098368 |
[47] |
Nakada Y, Canseco D C, Thet S , et al. Hypoxia induces heart regeneration in adult mice[J]. Nature, 2017,541(7636):222-227.
doi: 10.1038/nature20173 pmid: 27798600 |
[48] |
Puente B N, Kimura W, Muralidhar S A , et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response[J]. Cell, 2014,157(3):565-579.
doi: 10.1016/j.cell.2014.03.032 |
[49] |
Zacchigna S, Martinelli V, Moimas S , et al. Paracrine effect of regulatory T cells promotes cardiomyocyte proliferation during pregnancy and after myocardial infarction[J]. Nature Communications, 2018,9(1):2432.
doi: 10.1038/s41467-018-04908-z pmid: 29946151 |
[50] |
Jutel M, Akdis M, Budak F , et al. IL-10 and TGF-beta cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy[J]. Eur J Immunol, 2003,33(5):1205-1214.
doi: 10.1002/eji.200322919 pmid: 12731045 |
[51] |
Figueiredo A S, Schumacher A . The T helper type 17/regulatory T cell paradigm in pregnancy[J]. Immunology, 2016,148(1):13-21.
doi: 10.1111/imm.12595 pmid: 26855005 |
[52] |
Tao L C, Bei Y H, Zhang H F , et al. Exercise for the heart: signaling pathways[J]. Oncotarget, 2015,6(25):20773-20784.
doi: 10.18632/oncotarget.4770 pmid: 26318584 |
[53] |
Ellison G M, Waring C D, Vicinanza C , et al. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms[J]. Heart, 2012,98(1):5-10.
doi: 10.1136/heartjnl-2011-300639 |
[54] |
Vujic A, Lerchenmuller C, Wu T D , et al. Exercise induces new cardiomyocyte generation in the adult mammalian heart[J]. Nature Communications, 2018,9(1):1659.
doi: 10.1038/s41467-018-04083-1 pmid: 29695718 |
[55] |
Bostrom P, Mann N, Wu J , et al. C/EBPbeta controls exercise-induced cardiac growth and protects against pathological cardiac remodeling[J]. Cell, 2010,143(7):1072-1083.
doi: 10.1016/j.cell.2010.11.036 pmid: 21183071 |
[56] |
He S, Sharpless N E . Senescence in health and disease[J]. Cell, 2017,169(6):1000-1011.
doi: 10.1016/j.cell.2017.05.015 pmid: 28575665 |
[57] |
Yun M H, Davaapil H, Brockes J P . Recurrent turnover of senescent cells during regeneration of a complex structure[J]. Elife, 2015, DOI: 10.7554/eLife.05505.
doi: 10.7554/eLife.50087 pmid: 31794382 |
[58] |
Ritschka B, Storer M, Mas A , et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration[J]. Genes Dev, 2017,31(2):172-183.
doi: 10.1101/gad.290635.116 pmid: 28143833 |
[59] |
Feng T, Meng J, Kou S , et al. CCN1-induced cellular senescence promotes heart regeneration[J]. Circulation, 2019,139(21):2495-2498.
doi: 10.1161/CIRCULATIONAHA.119.039530 pmid: 31107624 |
[60] |
Sarig R, Rimmer R, Bassat E , et al. Transient p53-mediated regenerative senescence in the injured heart[J]. Circulation, 2019,139(21):2491-2494.
doi: 10.1161/CIRCULATIONAHA.119.040125 pmid: 31107623 |
[61] |
Davoli T, De Lange T . The causes and consequences of polyploidy in normal development and cancer[J]. Annu Rev Cell Dev Biol, 2011,27:585-610.
doi: 10.1146/annurev-cellbio-092910-154234 pmid: 21801013 |
[62] |
Duncan A W, Taylor M H, Hickey R D , et al. The ploidy conveyor of mature hepatocytes as a source of genetic variation[J]. Nature, 2010,467(7316):707-710.
doi: 10.1038/nature09414 pmid: 20861837 |
[63] |
Kikuchi K . Advances in understanding the mechanism of zebrafish heart regeneration[J]. Stem Cell Res, 2014,13(3):542-555.
doi: 10.1016/j.scr.2014.07.003 pmid: 25127427 |
[64] |
Vivien C J, Hudson J E, Porrello E R . Evolution, comparative biology and ontogeny of vertebrate heart regeneration[J]. NPJ Regen Med, 2016, DOI: 10.1038/npjregenmed.2016.12.
doi: 10.1038/s41536-019-0084-5 pmid: 31754462 |
[65] |
Brodsky V, Sarkisov D S, Arefyeva A M , et al. Polyploidy in cardiac myocytes of normal and hypertrophic human hearts; range of values[J]. Virchows Arch, 1994,424(4):429-435.
doi: 10.1007/bf00190566 pmid: 8205355 |
[66] |
Gonzalez-Rosa J M, Sharpe M, Field D , et al. Myocardial polyploidization creates a barrier to heart regeneration in zebrafish[J]. Dev Cell, 2018,44(4):433-446.
doi: 10.1016/j.devcel.2018.01.021 pmid: 29486195 |
[67] |
Hirose K, Payumo A Y, Cutie S , et al. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition[J]. Science, 2019,364(6436):184-188.
doi: 10.1126/science.aar2038 pmid: 30846611 |
[68] |
Tzahor E, Poss K D . Cardiac regeneration strategies: stayingyoung at heart[J]. Science, 2017,356(6342):1035-1039.
doi: 10.1126/science.aam5894 pmid: 28596337 |
[1] | 丁杨楠, 吕双杰, 陈厚早, 刘德培. 血管衰老中的表观遗传调控[J]. 上海大学学报(自然科学版), 2019, 25(3): 381-388. |
[2] | 董妍涵, 王昆. 非编码RNA在调控心脏细胞死亡相关的心血管疾病中的作用[J]. 上海大学学报(自然科学版), 2019, 25(3): 389-398. |
[3] | 朱宏文, 喻溥蛟, 许嘉鸿. miR-19b 通过激活 Akt 信号通路保护心肌细胞凋亡[J]. 上海大学学报(自然科学版), 2019, 25(1): 10-17. |
[4] | 苏杭, 王保垒, 李华顺, 朱晨光. Numb基因不同亚型对乳腺癌细胞MCF-7增殖和迁移能力的影响[J]. 上海大学学报(自然科学版), 2018, 24(3): 476-485. |
[5] | 陈欣欣, 刘珠媛, 顾寰宇, 周蕾. 人类胚胎干细胞来源的心肌细胞模型的建立及系统鉴定方案[J]. 上海大学学报(自然科学版), 2017, 23(3): 378-386. |
[6] | 朱浩1, 丁胜光1, 黄海涛1, 许嘉鸿2, 仲崇俊1. 新生大鼠心脏再生模型的改良及评价模式[J]. 上海大学学报(自然科学版), 2017, 23(3): 387-394. |
[7] | 刘仕进, 刘艳伟, 王瑞琦. 基于分层网络和反馈机制的细胞重编程[J]. 上海大学学报(自然科学版), 2016, 22(5): 552-559. |
[8] | 肖珍, 朱杰宁, 唐春梅, 林秋雄, 胡志琴, 张灼, 符永恒, 张梦珍, 单志新. 巨噬细胞移动抑制因子缺失加重苯肾上腺素诱导的小鼠心肌肥厚[J]. 上海大学学报(自然科学版), 2016, 22(3): 336-343. |
[9] | 贝毅桦, 肖俊杰. 运动诱导心脏再生: 治疗心血管疾病的新途径[J]. 上海大学学报(自然科学版), 2016, 22(3): 293-301. |
[10] | 何志敏1, 马文丽1,2, 郑文岭1,3. 沉默SEMA3A基因对胶质瘤细胞U251增殖和转移的影响[J]. 上海大学学报(自然科学版), 2015, 21(2): 237-244. |
[11] | 胡宗1, 梁桑华2, 马文丽1,2, 郑文岭1,3. PinX1基因真核表达载体的构建及其对乳腺癌MCF-7细胞增殖的抑制作用[J]. 上海大学学报(自然科学版), 2013, 19(6): 631-635. |
[12] | 康佳, 雷炳莉, 刘倩, 王学彤, 吴明红, 徐刚, 傅家谟. 上海河流沉积物的有机提取物对3 种细胞的毒性效应[J]. 上海大学学报(自然科学版), 2013, 19(4): 393-399. |
[13] | 马立新, 江霓, 袁淑娟. 负荷跟踪型发电系统协调控制方式的智能化[J]. 上海大学学报(自然科学版), 2013, 19(2): 144-149. |
[14] | 张志勇,徐凤丹. p53振子的形成机制及microRNA对p53目标基因表达的精细调控[J]. 上海大学学报(自然科学版), 2011, 17(5): 631-635. |
[15] | 颜婷婷,张登松,施利毅. 纳米结构材料的制备及应用进展[J]. 上海大学学报(自然科学版), 2011, 17(4): 447-457. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||