上海大学学报(自然科学版) ›› 2019, Vol. 25 ›› Issue (3): 381-388.doi: 10.12066/j.issn.1007-2861.2138
所属专题: 精准与转化医学
收稿日期:
2019-04-22
出版日期:
2019-06-30
发布日期:
2019-06-24
通讯作者:
陈厚早
E-mail:chenhouzao@ibms.cams.cn
作者简介:
陈厚早,男,研究员,博士生导师,国家自然科学基金委优秀青年科学基金获得者,教育部长江学者奖励计划青年长江学者,中组部青年拔尖人才,国家万人计划领军人物。基金资助:
DING Yangnan, LÜ Shuangjie, CHEN Houzao(), LIU Depei
Received:
2019-04-22
Online:
2019-06-30
Published:
2019-06-24
Contact:
Houzao CHEN
E-mail:chenhouzao@ibms.cams.cn
摘要:
血管衰老是伴随年龄增长而出现的血管结构和功能的改变, 主要包括血管重塑、血管稳态失衡以及血管细胞的衰老. 表观遗传调控是在不改变DNA 序列的情况下改变基因的表达, 其主要机制包括DNA 甲基化、组蛋白修饰以及非编码RNA 的调控等. 目前的研究表明各种表观遗传调控途径参与血管衰老的各个层面, 在血管衰老及相关疾病的发生发展中扮演重要角色. 靶向表观遗传调控的药物有望成为衰老相关疾病新的治疗方向.
中图分类号:
丁杨楠, 吕双杰, 陈厚早, 刘德培. 血管衰老中的表观遗传调控[J]. 上海大学学报(自然科学版), 2019, 25(3): 381-388.
DING Yangnan , LÜ Shuangjie , CHEN Houzao , LIU Depei . Epigenetic regulation in vascular aging[J]. Journal of Shanghai University(Natural Science Edition), 2019, 25(3): 381-388.
[1] |
Corella D, Ordovas J M . Aging and cardiovascular diseases: the role of gene-diet interactions[J]. Ageing Res Rev, 2014,18:53-73.
doi: 10.1016/j.arr.2014.08.002 |
[2] |
Mathers C D, Loncar D . Projections of global mortality and burden of disease from 2002 to 2030[J]. PLoS Med, 2006,3(11):e442.
doi: 10.1371/journal.pmed.0030442 pmid: 17132052 |
[3] |
Van Camp G . Cardiovascular disease prevention[J]. Acta Clin Belg, 2014,69(6):407-411.
doi: 10.1179/2295333714Y.0000000069 |
[4] |
Ding Y N, Tang X, Chen H Z , et al. Epigenetic regulation of vascular aging and age-related vascular diseases[J]. Adv Exp Med Biol, 2018,1086:55-75.
doi: 10.1007/978-981-13-1117-8_4 pmid: 30232752 |
[5] |
Feinberg A P . The key role of epigenetics in human disease prevention and mitigation[J]. N Engl J Med, 2018,378(14):1323-1334.
doi: 10.1056/NEJMra1402513 pmid: 29617578 |
[6] |
Sen P, Shah P P, Nativio R , et al. Epigenetic mechanisms of longevity and aging[J]. Cell, 2016,166(4):822-839.
doi: 10.1016/j.cell.2016.07.050 pmid: 27518561 |
[7] |
Jeltsch A . Reading and writing DNA methylation[J]. Nat Struct Mol Biol, 2008,15(10):1003-1004.
doi: 10.1038/nsmb1008-1003 pmid: 18836494 |
[8] |
Tsaprouni L G, Yang T P, Bell J , et al. Cigarette smoking reduces DNAmethylation levels at multiple genomic loci but the effect is partially reversible upon cessation[J]. Epigenetics, 2014,9(10):1382-1396.
doi: 10.4161/15592294.2014.969637 |
[9] |
Hai Z, Zuo W . Aberrant DNA methylation in the pathogenesis of atherosclerosis[J]. Clin Chim Acta, 2016,456:69-74.
doi: 10.1016/j.cca.2016.02.026 pmid: 26944567 |
[10] | Cutolo M, Paolino S, Pizzorni C . Possible contribution of chronic inflammation in the induction of cancer in rheumatic diseases[J]. Clin Exp Rheumatol, 2014,32(6):839-847. |
[11] |
Liu X L, Zhang P F, Ding S F , et al. Local gene silencing of monocyte chemoattractant protein-1 prevents vulnerable plaque disruption in apolipoprotein E-knockout mice[J]. PLoS One, 2012,7(3):e33497.
doi: 10.1371/journal.pone.0033497 pmid: 22428064 |
[12] |
Chan Y, Fish J E, D'Abreo C, et al. The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation[J]. J Biol Chem, 2004,279(33):35087-35100.
doi: 10.1074/jbc.M405063200 pmid: 15180995 |
[13] |
Cencioni C, Spallotta F, Martelli F , et al. Oxidative stress and epigenetic regulation in ageing and age-related diseases[J]. Int J Mol Sci, 2013,14(9):17643-17663.
doi: 10.3390/ijms140917643 pmid: 23989608 |
[14] |
Ventura A, Luzi L, Pacini S , et al. The p66Shc longevity gene is silenced through epigenetic modifications of an alternative promoter[J]. J Biol Chem, 2002,277(25):22370-22376.
doi: 10.1074/jbc.M200280200 pmid: 11948181 |
[15] |
Toghill B J, Saratzis A, Harrison S C , et al. The potential role of DNA methylation in the pathogenesis of abdominal aortic aneurysm[J]. Atherosclerosis, 2015,241(1):121-129.
doi: 10.1016/j.atherosclerosis.2015.05.001 pmid: 25974102 |
[16] |
Calvanese V, Lara E, Kahn A , et al. The role of epigenetics in aging and age-related diseases[J]. Ageing Res Rev, 2009,8(4):268-276.
doi: 10.1016/j.arr.2009.03.004 pmid: 19716530 |
[17] |
Wan Y Z, Gao P, Zhou S , et al. SIRT1-mediated epigenetic downregulation of plasminogen activator inhibitor-1 prevents vascular endothelial replicative senescence[J]. Aging Cell, 2014,13(5):890-899.
doi: 10.1111/acel.12247 pmid: 25040736 |
[18] |
Gracia-Sancho J, Villarreal G, Zhang Y, Jr , et al. Activation of SIRT1 by resveratrol induces KLF2 expression conferring an endothelial vasoprotective phenotype[J]. Cardiovasc Res, 2010,85(3):514-519.
doi: 10.1093/cvr/cvp337 pmid: 19815564 |
[19] |
Chen H Z, Wang F, Gao P , et al. Age-associated sirtuin 1 reduction in vascular smooth muscle links vascular senescence and inflammation to abdominal aortic aneurysm[J]. Circ Res, 2016,119(10):1076-1088.
doi: 10.1161/CIRCRESAHA.116.308895 pmid: 27650558 |
[20] |
Liu Y, Wang T T, Zhang R , et al. Calorie restriction protects against experimental abdominal aortic aneurysms in mice[J]. J Exp Med, 2016,213(11):2473-2488.
doi: 10.1084/jem.20151794 pmid: 27670594 |
[21] |
Fry J L, Al Sayah L, Weisbrod R M , et al. Vascular smooth muscle sirtuin-1 protects against diet-induced aortic stiffness[J]. Hypertension, 2016,68(3):775-784.
doi: 10.1161/HYPERTENSIONAHA.116.07622 pmid: 27432859 |
[22] |
Das A, Huang G X, Bonkowski M S , et al. Impairment of an endothelial NAD$^+$-H$_2$S signaling network is a reversible cause of vascular aging[J]. Cell, 2018,173(1):74-89.
doi: 10.1016/j.cell.2018.02.008 pmid: 29570999 |
[23] |
Cardus A, Uryga A K, Walters G , et al. SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence[J]. Cardiovasc Res, 2013,97(3):571-579.
doi: 10.1093/cvr/cvs352 |
[24] |
Dikalova A E, Itani H A, Nazarewicz R R , et al. Sirt3 impairment and SOD2 hyperacetylation in vascular oxidative stress and hypertension[J]. Circ Res, 2017.
doi: 10.1161/CIRCRESAHA.119.315259 pmid: 31747868 |
[25] |
Mullican S E, Gaddis C A, Alenghat T , et al. Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation[J]. Genes Dev, 2011,25(23):2480-2488.
doi: 10.1101/gad.175950.111 pmid: 22156208 |
[26] |
Ashburner B P, Westerheide S D, Baldwin A S, Jr . The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression[J]. Mol Cell Biol, 2001,21(20):7065-7077.
doi: 10.1128/MCB.21.20.7065-7077.2001 pmid: 11564889 |
[27] |
Xu Y . Transcriptional regulation of endothelial dysfunction in atherosclerosis: an epigenetic perspective[J]. J Biomed Res, 2014,28(1):47-52.
doi: 10.7555/JBR.27.20130055 pmid: 24474963 |
[28] |
Anderson K M, Anderson D M, McAnally J R, et al. Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development[J]. Nature, 2016,539(7629):433-436.
doi: 10.1038/nature20128 pmid: 27783597 |
[29] |
Wu C L, Wang Y, Jin B , et al. Senescence-associated long non-coding RNA (SALNR) delays oncogene-induced senescence through NF90 regulation[J]. J Biol Chem, 2015,290(50):30175-30192.
doi: 10.1074/jbc.M115.661785 pmid: 26491010 |
[30] |
Menghini R, Casagrande V, Cardellini M , et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1[J]. Circulation, 2009,120(15):1524-1532.
doi: 10.1161/CIRCULATIONAHA.109.864629 pmid: 19786632 |
[31] |
Cordes K R, Sheehy N T, White M P , et al. MiR-145 and miR-143 regulate smooth muscle cell fate and plasticity[J]. Nature, 2009,460(7256):705-710.
doi: 10.1038/nature08195 pmid: 19578358 |
[32] |
Wu X Y, Fan W D, Fang R , et al. Regulation of microRNA-155 in endothelial inflammation by targeting nuclear factor (NF)-kappaB P65[J]. J Cell Biochem, 2014,115(11):1928-1936.
doi: 10.1002/jcb.24864 |
[33] |
Tian H, Liu C, Zou X , et al. MiRNA-194 regulates palmitic acid-induced toll-like receptor 4 inflammatory responses in THP-1 cells[J]. Nutrients, 2015,7(5):3483-3496.
doi: 10.3390/nu7053483 pmid: 25984739 |
[34] |
Goettsch C, Rauner M, Pacyna N , et al. MiR-125b regulates calcification of vascular smooth muscle cells[J]. Am J Pathol, 2011,179(4):1594-1600.
doi: 10.1016/j.ajpath.2011.06.016 pmid: 21806957 |
[35] |
Magenta A, Greco S, Gaetano C , et al. Oxidative stress and microRNAs in vascular diseases[J]. Int J Mol Sci, 2013,14(9):17319-17346.
doi: 10.3390/ijms140917319 pmid: 23975169 |
[36] |
Shin S S, Park S S, Hwang B , et al. MicroRNA-106a suppresses proliferation, migration, and invasion of bladder cancer cells by modulating MAPK signaling, cell cycle regulators, and Ets-1-mediated MMP-2 expression[J]. Oncol Rep, 2016,36(4):2421-2429.
doi: 10.3892/or.2016.5015 pmid: 27513725 |
[37] |
Boon R A, Seeger T, Heydt S , et al. MicroRNA-29 in aortic dilation: implications for aneurysm formation[J]. Circ Res, 2011,109(10):1115-1119.
doi: 10.1161/CIRCRESAHA.111.255737 |
[38] |
Di Gregoli K, Mohamad Anuar N N, Bianco R, et al. MicroRNA-181b controls atherosclerosis and aneurysms through regulation of TIMP-3 and elastin[J]. Circ Res, 2017,120(1):49-65.
doi: 10.1161/CIRCRESAHA.116.309321 pmid: 27756793 |
[39] |
Greco S, Gorospe M, Martelli F . Noncoding RNA in age-related cardiovascular diseases[J]. J Mol Cell Cardiol, 2015,83:142-155.
doi: 10.1016/j.yjmcc.2015.01.011 pmid: 25640162 |
[40] |
Voelter-Mahlknecht S . Epigenetic associations in relation to cardiovascular prevention and therapeutics[J]. Clin Epigenetics, 2016,8:4.
doi: 10.1186/s13148-016-0170-0 pmid: 26779291 |
[41] |
Kim E N, Kim M Y, Lim J H , et al. The protective effect of resveratrol on vascular aging by modulation of the renin-angiotensin system[J]. Atherosclerosis, 2018,270:123-131.
doi: 10.1016/j.atherosclerosis.2018.01.043 pmid: 29407880 |
[42] |
Mercken E M, Mitchell S J, Martin-Montalvo A , et al. SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass[J]. Aging Cell, 2014,13(5):787-796.
doi: 10.1111/acel.12220 pmid: 24931715 |
[43] |
Minor R K, Baur J A, Gomes A P , et al. SRT1720 improves survival and healthspan of obese mice[J]. Sci Rep, 2011,1:70.
doi: 10.1038/srep00070 pmid: 22355589 |
[44] |
Da Luz P L, Tanaka L, Brum P C , et al. Red wine and equivalent oral pharmacological doses of resveratrol delay vascular aging but do not extend life span in rats[J]. Atherosclerosis, 2012,224(1):136-142.
doi: 10.1016/j.atherosclerosis.2012.06.007 |
[45] |
Noh R M, Venkatasubramanian S, Daga S , et al. Cardiometabolic effects of a novel SIRT1 activator, SRT2104, in people with type 2 diabetes mellitus[J]. Open Heart, 2017,4(2):e000647.
doi: 10.1136/openhrt-2017-000647 pmid: 28912956 |
[46] |
Krueger J G, Suarez-Farinas M, Cueto I , et al. A randomized, placebo-controlled study of SRT2104, a SIRT1 activator, in patients with moderate to severe psoriasis[J]. PLoS One, 2015,10(11):e0142081.
doi: 10.1371/journal.pone.0142081 pmid: 26556603 |
[47] |
Kalani R, Judge S, Carter C , et al. Effects of caloric restriction and exercise on age-related, chronic inflammation assessed by C-reactive protein and interleukin-6[J]. J Gerontol A Biol Sci Med Sci, 2006,61(3):211-217.
doi: 10.1093/gerona/61.3.211 pmid: 16567369 |
[48] |
Redman L M, Smith S R, Burton J H , et al. Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging[J]. Cell Metab, 2018,27(4):805-815.
doi: 10.1016/j.cmet.2018.02.019 pmid: 29576535 |
[49] |
Zhang R, Chen H Z, Liu D P . The four layers of aging[J]. Cell Systems, 2015,1(3):180-186.
doi: 10.1016/j.cels.2015.09.002 pmid: 27135911 |
[50] |
Cheng L Q, Zhang Z Q, Chen H Z , et al. Epigenetic regulation in cell senescence[J]. J Mol Med (Berl), 2017,95(12):1257-1268.
doi: 10.1007/s00109-017-1581-x pmid: 28887637 |
[51] |
Liu J, Jia G . Methylation modifications in eukaryotic messenger RNA[J]. J Genet Genomics, 2014,41(1):21-33.
doi: 10.1016/j.jgg.2013.10.002 |
[52] |
Flores J V, Cordero-Espinoza L, Oeztuerk-Winder F , et al. Cytosine-5 RNA methylation regulates neural stem cell differentiation and motility[J]. Stem Cell Reports, 2017,8(1):112-124.
doi: 10.1016/j.stemcr.2016.11.014 pmid: 28041877 |
[53] |
Nawy T . Single-cell sequencing[J]. Nat Methods, 2014,11(1):18.
doi: 10.1038/nmeth.2771 pmid: 24524131 |
[54] |
Ku W L, Nakamura K, Gao W , et al. Single-cell chromatin immunocleavage sequencing (scChIC-seq) to profile histone modification[J]. Nat Methods, 2019,16(4):323-325.
doi: 10.1038/s41592-019-0361-7 pmid: 30923384 |
[1] | 董妍涵, 王昆. 非编码RNA在调控心脏细胞死亡相关的心血管疾病中的作用[J]. 上海大学学报(自然科学版), 2019, 25(3): 389-398. |
[2] | 高峰1,2, 陈静海1,2. 非编码RNA调控心脏重构与再生[J]. 上海大学学报(自然科学版), 2016, 22(3): 302-309. |
[3] | 王建勋1, 高金宁1, 丁巍2. 非编码RNA与心肌重构[J]. 上海大学学报(自然科学版), 2016, 22(3): 310-317. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||