上海大学学报(自然科学版) ›› 2019, Vol. 25 ›› Issue (3): 389-398.doi: 10.12066/j.issn.1007-2861.2137
所属专题: 精准与转化医学
收稿日期:
2019-04-10
出版日期:
2019-06-30
发布日期:
2019-06-24
通讯作者:
王昆
E-mail:wangk696@163.com
作者简介:
王昆, 教授,博士生导师,国家自然科学基金委优秀青年科学基金获得者,山东省自然科学杰出青年基金获得者。基金资助:
Received:
2019-04-10
Online:
2019-06-30
Published:
2019-06-24
Contact:
Kun WANG
E-mail:wangk696@163.com
摘要:
鉴于成年心脏中心肌细胞的再生能力有限,使得功能性心肌细胞的丧失成为心肌重塑相关的心血管疾病的主要原因.细胞凋亡、自噬和坏死过程涉及多个复杂的信号通路,控制着心肌细胞死亡和细胞存活的平衡, 导致心肌细胞的损失. 近年发现,非编码RNA(non-coding RNAs,ncRNAs)在心血管疾病相关的细胞死亡中发挥至关重要的作用. 此外,线粒体的动态平衡与3种类型的细胞死亡密切相关,非编码RNA能够通过靶向细胞死亡信号通路中的基因来调节心肌细胞中的线粒体分裂/融合平衡. 重点介绍了在应激状态下的心肌细胞中,关于细胞凋亡/自噬/坏死和ncRNAs之间复杂关系的最新研究进展,以及对心脏病治疗的潜在应用价值.
中图分类号:
董妍涵, 王昆. 非编码RNA在调控心脏细胞死亡相关的心血管疾病中的作用[J]. 上海大学学报(自然科学版), 2019, 25(3): 389-398.
DONG Yanhan , WANG Kun . Role of noncoding RNAs in regulation of cardiac cell death and cardiovascular diseases[J]. Journal of Shanghai University(Natural Science Edition), 2019, 25(3): 389-398.
[1] |
Konstantinidis K, Whelan R S, Kitsis R N . Mechanisms of cell death in heart disease[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012,32(7):1552-1562.
doi: 10.1161/ATVBAHA.111.224915 pmid: 22596221 |
[2] |
Wang K, Zhou L Y, Wang J X , et al. E2F1-dependent miR-421 regulates mitochondrial fragmentation and myocardial infarction by targeting Pink1[J]. Nature Communications, 2015,6:7619.
doi: 10.1038/ncomms8619 pmid: 26184432 |
[3] |
Boon R A, Dimmeler S . MicroRNAs in myocardial infarction[J]. Nature Reviews Cardiology, 2015,12(3):135-142.
doi: 10.1038/nrcardio.2014.207 pmid: 25511085 |
[4] |
Chekulaeva M, Filipowicz W . Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells[J]. Current Opinion in Cell Biology, 2009,21(3):452-460.
doi: 10.1016/j.ceb.2009.04.009 |
[5] |
Filipowicz W, Bhattacharyya S N, Sonenberg N . Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?[J]. Nature Reviews Genetics, 2008,9(2):102-114.
doi: 10.1038/nrg2290 pmid: 18197166 |
[6] |
Berezikov E . Evolution of microRNA diversity and regulation in animals[J]. Nature Reviews Genetics, 2011,12(12):846-860.
doi: 10.1038/nrg3079 pmid: 22094948 |
[7] |
Graves P, Zeng Y . Biogenesis of mammalian microRNAs: a global view[J]. Genomics Proteomics Bioinformatics, 2012,10(5):239-245.
doi: 10.1016/j.gpb.2012.06.004 pmid: 23200133 |
[8] |
Kroemer G, Galluzzi L, Vandenabeele P , et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009[J]. Cell Death Differ, 2009,16(1):3-11.
doi: 10.1038/cdd.2008.150 pmid: 18846107 |
[9] |
Bergsbaken T, Fink S L, Cookson B T . Pyroptosis: host cell death and inflammation[J]. Nature Reviews Microbiology, 2009,7(2):99-109.
doi: 10.1038/nrmicro2070 pmid: 19148178 |
[10] |
Orogo A M, Gustafsson A B . Cell death in the myocardium: my heart won't go on[J]. IUBMB Life, 2013,65(8):651-656.
doi: 10.1002/iub.1180 |
[11] |
Clerk A, Cullingford T E, Fuller S J , et al. Signaling pathways mediating cardiac myocyte gene expression in physiological and stress responses[J]. Journal of Cellular Physiology, 2007,212(2):311-322.
doi: 10.1002/jcp.21094 pmid: 17450511 |
[12] |
Xu C, Lu Y, Pan Z , et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes[J]. Journal of Cell Science, 2007,120(Pt17):3045-3052.
doi: 10.1242/jcs.010728 pmid: 17715156 |
[13] |
Matkovich S J, Wang W, Tu Y , et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts[J]. Circulation Research, 2010,106(1):166-175.
doi: 10.1161/CIRCRESAHA.109.202176 pmid: 19893015 |
[14] |
Bostjancic E, Zidar N, Glavac D . MicroRNA microarray expression profiling in human myocardial infarction[J]. Disease Markers, 2009,27(6):255-268.
doi: 10.3233/DMA-2009-0671 pmid: 20075508 |
[15] |
Yang B, Lin H, Xiao J , et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2[J]. Nat Med, 2007,13(4):486-491.
doi: 10.1038/nm1569 pmid: 17401374 |
[16] |
Tang Y, Zheng J, Sun Y , et al. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2[J]. International Heart Journal, 2009,50(3):377-387.
doi: 10.1536/ihj.50.377 pmid: 19506341 |
[17] |
Wang H, Li J, Chi H , et al. MicroRNA-181c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells[J]. Journal of Cellular and Molecular Medicine, 2015,19(9):2084-2097.
doi: 10.1111/jcmm.12563 pmid: 25898913 |
[18] |
Rane S, He M, Sayed D , et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes[J]. Circulation Research, 2009,104(7):879-886.
doi: 10.1161/CIRCRESAHA.108.193102 pmid: 19265035 |
[19] |
Cheng Y, Liu X, Zhang S , et al. MicroRNA-21 protects against the H$_2$O$_2$-induced injury on cardiac myocytes via its target gene PDCD4[J]. J Mol Cell Cardiol, 2009,47(1):5-14.
doi: 10.1016/j.yjmcc.2009.01.008 |
[20] |
Ren X P, Wu J, Wang X , et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20[J]. Circulation, 2009,119(17):2357-2366.
doi: 10.1161/CIRCULATIONAHA.108.814145 pmid: 19380620 |
[21] |
Li J, Donath S, Li Y , et al. MiR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway[J]. PLoS Genetics, 2010,6(1):e1000795.
doi: 10.1371/journal.pgen.1000795 pmid: 20062521 |
[22] |
Wang J X, Gao J, Ding S L , et al. Oxidative modification of miR-184 enables it to target Bcl-xL and Bcl-w[J]. Mol Cell, 2015,59(1):50-61.
doi: 10.1016/j.molcel.2015.05.003 pmid: 26028536 |
[23] |
Cassidy-Stone A, Chipuk J E, Ingerman E , et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization[J]. Developmental Cell, 2008,14(2):193-204.
doi: 10.1016/j.devcel.2007.11.019 |
[24] |
Li P . MicroRNAs in cardiac apoptosis[J]. Journal of Cardiovascular Translational Research, 2010,3(3):219-224.
doi: 10.1007/s12265-010-9175-9 |
[25] |
Li J, Zhou J, Li Y , et al. Mitochondrial fission controls DNA fragmentation by regulating endonuclease G[J]. Free Radical Biology& Medicine, 2010,49(4):622-631.
doi: 10.1039/c9nr08192e pmid: 31793608 |
[26] |
Li J, Li Y, Jiao J , et al. Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis[J]. Molecular and Cellular Biology, 2014,34(10):1788-1799.
doi: 10.1128/MCB.00774-13 |
[27] |
Frank S, Gaume B, Bergmann-Leitner E S, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis[J]. Developmental Cell, 2001,1(4):515-525.
doi: 10.1016/s1534-5807(01)00055-7 pmid: 11703942 |
[28] |
Ong S B, Subrayan S, Lim S Y , et al. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury[J]. Circulation, 2010,121(18):2012-2022.
doi: 10.1161/CIRCULATIONAHA.109.906610 pmid: 20421521 |
[29] |
Wang J X, Jiao J Q, Li Q , et al. MiR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1[J]. Nat Med, 2011,17(1):71-78.
doi: 10.1038/nm.2282 pmid: 21186368 |
[30] |
Dagda R K, Cherra S J, 3rd, Kulich S M, et al. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission[J]. The Journal of Biological Chemistry, 2009,284(20):13843-13855.
doi: 10.1074/jbc.M808515200 pmid: 19279012 |
[31] |
Wang K, Liu C Y, Zhang X J , et al. MiR-361-regulated prohibitin inhibits mitochondrial fission and apoptosis and protects heart from ischemia injury[J]. Cell Death Differ, 2015,22(6):1058-1068.
doi: 10.1038/cdd.2014.200 pmid: 25501599 |
[32] |
Papait R, Kunderfranco P, Stirparo G G , et al. Long noncoding RNA: a new player of heart failure?[J]. Journal of Cardiovascular Translational Research, 2013,6(6):876-883.
doi: 10.1007/s12265-013-9488-6 |
[33] |
Wang K C, Chang H Y . Molecular mechanisms of long noncoding RNAs[J]. Molecular Cell, 2011,43(6):904-914.
doi: 10.1016/j.molcel.2011.08.018 |
[34] |
Piccoli M T, Gupta S K, Thum T . Noncoding RNAs as regulators of cardiomyocyte proliferation and death[J]. J Mol Cell Cardiol, 2015,89(PtA):59-67.
doi: 10.1016/j.yjmcc.2015.02.002 pmid: 25665459 |
[35] |
Kanduri C . Kcnq1ot1: a chromatin regulatory RNA[J]. Seminars in Cell& Developmental Biology, 2011,22(4):343-350.
doi: 10.1177/0145561319879245 pmid: 31619067 |
[36] |
Ishii N, Ozaki K, Sato H , et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction[J]. Journal of Human Genetics, 2006,51(12):1087-1099.
doi: 10.1007/s10038-006-0070-9 |
[37] |
Grote P, Wittler L, Hendrix D , et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse[J]. Developmental Cell, 2013,24(2):206-214.
doi: 10.1016/j.devce1.2012.12.012 |
[38] |
Wang K, Long B, Zhou L Y , et al. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation[J]. Nat Commun, 2014,5:3596.
doi: 10.1038/ncomms4596 pmid: 24710105 |
[39] |
Hsu M T, Coca-Prados M . Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells[J]. Nature, 1979,280(5720):339-340.
doi: 10.1038/280339a0 pmid: 460409 |
[40] |
Hansen T B, Jensen T I, Clausen B H , et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013,495(7441):384-388.
doi: 10.1038/nature11993 |
[41] |
Wang K, Long B, Liu F , et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223[J]. Eur Heart J, 2016,37(33):2602-2611.
doi: 10.1093/eurheartj/ehv713 pmid: 26802132 |
[42] |
Koseki T, Inohara N, Chen S , et al. ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998,95(9):5156-5160.
doi: 10.1073/pnas.95.9.5156 pmid: 9560245 |
[43] |
Li Y Z, Lu D Y, Tan W Q , et al. P53 initiates apoptosis by transcriptionally targeting the antiapoptotic protein ARC[J]. Molecular and Cellular Biology, 2008,28(2):564-574.
doi: 10.1128/MCB.00738-07 pmid: 17998337 |
[44] |
He C, Klionsky D J . Regulation mechanisms and signaling pathways of autophagy[J]. Annual Review of Genetics, 2009,43:67-93.
doi: 10.1146/annurev-genet-102808-114910 pmid: 19653858 |
[45] |
Taneike M, Yamaguchi O, Nakai A , et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy[J]. Autophagy, 2010,6(5):600-606.
doi: 10.4161/auto.6.5.11947 pmid: 20431347 |
[46] |
Long B, Ding S L, Liu F , et al. Autophagic program is regulated by miR-325[J]. Cell Death Differ, 2014,21(6):967-977.
doi: 10.1038/cdd.2014.18 |
[47] |
Pan W, Zhong Y, Cheng C , et al. MiR-30-regulated autophagy mediates angiotensin Ⅱ-induced myocardial hypertrophy[J]. PLoS One, 2013,8(1):e53950.
doi: 10.1371/journal.pone.0053950 pmid: 23326547 |
[48] |
Sciarretta S, Volpe M, Sadoshima J . Mammalian target of rapamycin signaling in cardiac physiology and disease[J]. Circulation Research, 2014,114(3):549-564.
doi: 10.1161/CIRCRESAHA.114.302022 |
[49] |
Su M, Wang J, Wang C , et al. MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis[J]. Cell Death Differ, 2015,22(6):986-999.
doi: 10.1038/cdd.2014.187 pmid: 25394488 |
[50] |
Li Q, Xie J, Li R , et al. Overexpression of microRNA-99a attenuates heart remodelling and improves cardiac performance after myocardial infarction[J]. Journal of Cellular & Molecular Medicine, 2014,18(5):919-928.
doi: 10.1002/ptr.6560 pmid: 31795012 |
[51] |
Song L, Su M, Wang S , et al. MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1[J]. Journal of Cellular and Molecular Medicine, 2014,18(11):2266-2274.
doi: 10.1111/jcmm.12380 pmid: 25209900 |
[52] |
Gupta S K, Foinquinos A, Thum S , et al. Preclinical development of a microRNA-based therapy for elderly patients with myocardial infarction[J]. Journal of the American College of Cardiology, 2016,68(14):1557-1571.
doi: 10.1016/j.jacc.2016.07.739 pmid: 27687198 |
[53] |
Wang K, Liu C Y, Zhou L Y , et al. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p[J]. Nature Communications, 2015,6:6779.
doi: 10.1038/ncomms7779 pmid: 25858075 |
[54] |
Wu W, Liu P, Li J . Necroptosis: an emerging form of programmed cell death[J]. Critical Reviews in Oncology/Hematology, 2012,82(3):249-258.
doi: 10.1016/j.critrevonc.2011.08.004 pmid: 21962882 |
[55] |
Galluzzi L, Kepp O, Kroemer G . RIP kinases initiate programmed necrosis[J]. Journal of Molecular Cell Biology, 2009,1(1):8-10.
doi: 10.1093/jmcb/mjp007 pmid: 19679643 |
[56] |
Whelan R S, Kaplinskiy V, Kitsis R N . Cell death in the pathogenesis of heart disease: mechanisms and significance[J]. Annual Review of Physiology, 2010,72:19-44.
doi: 10.1146/annurev.physiol.010908.163111 pmid: 20148665 |
[57] |
Baines C P, Kaiser R A, Purcell N H , et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death[J]. Nature, 2005,434(7033):658-662.
doi: 10.1038/nature03434 pmid: 15800627 |
[58] |
Nakagawa T, Shimizu S, Watanabe T , et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death[J]. Nature, 2005,434(7033):652-658.
doi: 10.1038/nature03317 pmid: 15800626 |
[59] |
Wang K, An T, Zhou L Y , et al. E2F1-regulated miR-30b suppresses cyclophilin D and protects heart from ischemia/reperfusion injury and necrotic cell death[J]. Cell Death Differ, 2015,22(5):743-754.
doi: 10.1038/cdd.2014.165 pmid: 25301066 |
[60] |
Liu J, Van Mil A, Vrijsen K , et al. MicroRNA-155 prevents necrotic cell death in human cardiomyocyte progenitor cells via targeting RIP1[J]. Journal of Cellular and Molecular Medicine, 2011,15(7):1474-1482.
doi: 10.1111/j.1582-4934.2010.01104.x |
[61] |
Lee E W, Kim J H, Ahn Y H , et al. Ubiquitination and degradation of the FADD adaptor protein regulate death receptor-mediated apoptosis and necroptosis[J]. Nature Communications, 2012,3:978.
doi: 10.1038/ncomms1981 pmid: 22864571 |
[62] |
Wang J X, Zhang X J, Li Q , et al. MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD[J]. Circulation Research, 2015,117(4):352-363.
doi: 10.1161/CIRCRESAHA.117.305781 pmid: 26038570 |
[63] |
Wang K, Liu F, Liu C Y , et al. The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873[J]. Cell Death Differ, 2016,23(8):1394-1405.
doi: 10.1038/cdd.2016.28 pmid: 27258785 |
[64] |
Nishida K, Yamaguchi O, Otsu K . Crosstalk between autophagy and apoptosis in heart disease[J]. Circulation Research, 2008,103(4):343-351.
doi: 10.1161/CIRCRESAHA.108.175448 pmid: 18703786 |
[65] |
Yamaguchi O, Higuchi Y, Hirotani S , et al. Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(26):15883-15888.
doi: 10.1073/pnas.2136717100 pmid: 14665690 |
[66] |
Scherz-Shouval R, Shvets E, Fass E , et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4[J]. The EMBO Journal, 2007,26(7):1749-1760.
doi: 10.1038/sj.emboj.7601623 pmid: 17347651 |
[67] | Marquez R T, Xu L . Bcl-2: Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch[J]. American Journal of Cancer Research, 2012,2(2):214-221. |
[68] |
Crighton D, Wilkinson S, O'Prey J, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis[J]. Cell, 2006,126(1):121-134.
doi: 10.1016/j.cell.2006.05.034 pmid: 16839881 |
[69] |
Diwan A, Matkovich S J, Yuan Q , et al. Endoplasmic reticulum-mitochondria crosstalk in NIX-mediated murine cell death[J]. The Journal of Clinical Investigation, 2009,119(1):203-212.
doi: 10.1172/JCI36445 pmid: 19065046 |
[70] |
Whelan R S, Konstantinidis K, Wei A C , et al. Bax regulates primary necrosis through mitochondrial dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(17):6566-6571.
doi: 10.1073/pnas.1201608109 |
[71] |
Li X, Zeng Z, Li Q , et al. Inhibition of microRNA-497 ameliorates anoxia/reoxygenation injury in cardiomyocytes by suppressing cell apoptosis and enhancing autophagy[J]. Oncotarget, 2015,6(22):18829-18844.
doi: 10.18632/oncotarget.4774 pmid: 26299920 |
[72] |
Ham O, Lee S Y, Lee C Y , et al. Let-7b suppresses apoptosis and autophagy of human mesenchymal stem cells transplanted into ischemia/reperfusion injured heart 7by targeting caspase-3[J]. Stem Cell Research & Therapy, 2015,6:147.
doi: 10.1055/s-0039-1693923 pmid: 31795007 |
[73] |
Ng F, Tang B L . Sirtuins' modulation of autophagy[J]. Journal of Cellular Physiology, 2013,228(12):2262-2270.
doi: 10.1002/jcp.24399 |
[74] |
Widera C, Gupta S K, Lorenzen J M , et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome[J]. J Mol Cell Cardiol, 2011,51(5):872-875.
doi: 10.1016/j.yjmcc.2011.07.011 |
[1] | 尚羽, 王田田, 吴美英, 王璐, 何慧心, 安静. $O_{3}$氧化黑碳对SH-SY5Y细胞的毒性作用[J]. 上海大学学报(自然科学版), 2019, 25(4): 550-557. |
[2] | 丁杨楠, 吕双杰, 陈厚早, 刘德培. 血管衰老中的表观遗传调控[J]. 上海大学学报(自然科学版), 2019, 25(3): 381-388. |
[3] | 朱宏文, 喻溥蛟, 许嘉鸿. miR-19b 通过激活 Akt 信号通路保护心肌细胞凋亡[J]. 上海大学学报(自然科学版), 2019, 25(1): 10-17. |
[4] | 李雨雨, 金由辛, 徐中娟, 张书忙, 索广力. ABL 沉默对 DOX 和 TRAIL 诱导结肠癌细胞 HT29 凋亡的影响[J]. 上海大学学报(自然科学版), 2018, 24(1): 134-141. |
[5] | 高峰1,2, 陈静海1,2. 非编码RNA调控心脏重构与再生[J]. 上海大学学报(自然科学版), 2016, 22(3): 302-309. |
[6] | 王建勋1, 高金宁1, 丁巍2. 非编码RNA与心肌重构[J]. 上海大学学报(自然科学版), 2016, 22(3): 310-317. |
[7] | 史维刚, 廖鲜艳, 翁新楚. 丹参酮ⅡA对UVA诱导的HaCaT细胞凋亡的影响[J]. 上海大学学报(自然科学版), 2015, 21(6): 757-765. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||