上海大学学报(自然科学版) ›› 2024, Vol. 30 ›› Issue (6): 1040-1052.doi: 10.12066/j.issn.1007-2861.2494

• • 上一篇    下一篇

锂离子在共价有机骨架/石墨烯复合材料中的 吸附与传输特性

徐 毅1, 孙怡雯1, 孙 怿1, 方浩言1, 周子恒1, 袁 彬2   

  1. 1. 上海大学 环境与化学工程学院, 上海 200444; 2. 上海栊桦检测科技有限公司, 上海 201114
  • 收稿日期:2023-04-03 出版日期:2024-12-28 发布日期:2025-01-02
  • 通讯作者: 徐 毅 (1980—), 男, 副教授, 博士, 研究方向为新能源材料. E-mail:tree2000xy@shu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目 (21975154); 上海高水平地方高校创新研究团队资助项目 (N13G21024X41)

Adsorption and transport properties of lithium ions in covalent organic framework/graphene composites

XU Yi1 , SUN Yiwen1 , SUN Yi1 , FANG Haoyan1 , ZHOU Ziheng1 , YUAN Bin2   

  1. 1. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; 2. Shanghai Longhua Testing Technology Co., Ltd., Shanghai 201114, China
  • Received:2023-04-03 Online:2024-12-28 Published:2025-01-02

摘要: 利用分子模拟方法对共价有机骨架 (covalent organic framework, COF)/石墨烯 (graphene, G) 复合材料 (COF@G) 中锂离子 (Li+) 的吸附与传输特性开展了研究, 明确了 Li+ 的吸附位点与吸附顺序, 得到了相应的吸附能, 观察到了 COF@G 的表观形貌变化, 并获 得了其中的 π-π 堆积作用以及 COF-G、Li+-G 间距. 当达到饱和吸附状态时, COF@G 的体 积变化率低于 25%, 平均电压保持在 3.20 V 以上. 在同等条件下, Li+ 在 G 外表面的电导率 最大. 模拟结果可为此类体系的实际应用提供相应的理论基础.

关键词: 共价有机骨架, 石墨烯, 锂离子, 吸附与传输, 分子模拟

Abstract: The adsorption and transport properties of lithium ions (Li+) in covalent organic framework (COF)/graphene (G) composites (COF@G) were investigated using molecular simulations. The adsorption sites and sequence of Li+ were defined, and the corresponding adsorption energy was determined together with the apparent change in the morphology of COF@G. Additionally, the internal π-π stacking interactions and COF-G and Li+-G distances were calculated. When the saturated adsorption state was attained, the volumetric change rate of COF@G was lower than 25%, and the average voltage remained above 3.20 V. Under the same conditions, Li+ exhibited the highest conductivity on the outer surface of G. These results provide a theoretical basis for the practical applications of these systems.

Key words: covalent organic framework (COF), graphene (G), lithium ion (Li+), adsorption and transport, molecular simulation

中图分类号: