上海大学学报(自然科学版) ›› 2022, Vol. 28 ›› Issue (1): 91-101.doi: 10.12066/j.issn.1007-2861.2224

• 研究论文 • 上一篇    下一篇

共价有机骨架/碳纳米管复合材料中锂离子吸附与传输特性的分子模拟

徐毅1(), 崔致远1, 吴凡1, 袁彬2   

  1. 1.上海大学 环境与化学工程学院, 上海 200444
    2.魏德曼检测技术 (上海) 有限公司, 上海 201114
  • 收稿日期:2020-01-10 出版日期:2022-02-28 发布日期:2022-03-02
  • 通讯作者: 徐毅 E-mail:tree2000xy@shu.edu.cn
  • 作者简介:徐 毅(1980—), 男, 副教授, 博士, 研究方向为新能源材料. E-mail: tree2000xy@shu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(21406136);上海市教委科研创新资助项目(14YZ015);创新团队发展计划资助项目(IRT13078);上海智能计算系统工程技术研究中心资助项目(19DZ2252600)

Adsorption and transport properties of the lithium ion in a covalent organic framework/carbon nanotube composite by molecular simulation

XU Yi1(), CUI Zhiyuan1, WU Fan1, YUAN Bin2   

  1. 1. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
    2. Weidmann Diagnostic Solutions (Shanghai) Co., Ltd., Shanghai 201114, China
  • Received:2020-01-10 Online:2022-02-28 Published:2022-03-02
  • Contact: XU Yi E-mail:tree2000xy@shu.edu.cn

摘要:

利用分子模拟方法对共价有机骨架 (covalent organic framework, COF)/碳纳米管(carbon nanotube, CNT) 复合材料 COF@CNT 中锂离子 (Li$^{+})$ 的吸附与传输特性开展研究, 明确了 Li$^{+}$ 的吸附位点与吸附顺序, 得到了相应的吸附能, 并观察 COF@CNT 的表观形貌变化. 当达到饱和吸附状态时, COF@CNT 的体积变化率仅为 0.25, 平均电压保持在 2.00 V 以上, 而理论容量则高达 1 402.47 mAh/g. 此外, Li$^{+}$ 在 COF@CNT 内部的电导率大于其在单纯 CNT 中电导率的实测值. 模拟结果可为此类体系的实际应用提供理论基础.

关键词: 共价有机骨架, 碳纳米管, 锂离子, 吸附, 传输, 分子模拟

Abstract:

In this study, the adsorption and transport properties of the lithium ion (Li$^{+})$ in a covalent organic framework/carbon nanotube composite (COF@CNT) are investigated through molecular simulation. The adsorption sites and sequence of Li$^{+}$ are defined and the corresponding adsorption energy is obtained. In addition, apparent change in the morphology of the COF@CNT is identified. When saturated adsorption is reached, the volumetric change rate of the COF@CNT is only 0.25. Simultaneously, the average voltage is maintained at greater than 2.00 V, and the theoretical capacity reaches as high as1402.47 mAh/g. Finally, the electronic conductivity of Li$^{+}$ inside the COF@CNT exceeds that in a pure CNT. The results of this study can provide a theoretical basis for the practical application of these systems.

Key words: covalent organic framework, carbon nanotube, lithium ion, adsorption and transport, molecular simulation

中图分类号: