上海大学学报(自然科学版) ›› 2020, Vol. 26 ›› Issue (6): 972-979.doi: 10.12066/j.issn.1007-2861.2111
收稿日期:
2018-12-05
出版日期:
2020-12-31
发布日期:
2020-12-29
通讯作者:
孙炜伟
E-mail:vivisun@shu.edu.cn
作者简介:
孙炜伟(1982—), 男, 副教授, 博士, 研究方向为能源存储材料. E-mail: vivisun@shu.edu.cn
TANG Xuxu, YANG Qingsi, YANG Jianwei, SUN Weiwei()
Received:
2018-12-05
Online:
2020-12-31
Published:
2020-12-29
Contact:
SUN Weiwei
E-mail:vivisun@shu.edu.cn
摘要:
通过常温法设计并合成了钴金属修饰的共价有机骨架 (covalent organicframework, COF) 结构, 然后以此为前驱体,通过修饰的钴金属中心在一步煅烧过程中原位催生碳纳米管 (carbonnanotube, CNT), 从而获得氮掺杂碳/碳纳米管杂化复合材料.氮的掺杂进一步增加了该复合材料的储锂活性位点,并有效提高了材料的电子和离子的电导率. 在作为锂离子电池负极材料时,该氮掺杂的碳/碳纳米管杂化复合材料展现了较高的比容量和较好的循环稳定性,在经过 300 圈的充放电循环后, 其比容量保持在 652 mA·h·g-1.
中图分类号:
汤旭旭, 杨秦斯, 杨建伟, 孙炜伟. 共价有机骨架衍生的氮掺杂碳/碳纳米管杂化结构的储锂性能[J]. 上海大学学报(自然科学版), 2020, 26(6): 972-979.
TANG Xuxu, YANG Qingsi, YANG Jianwei, SUN Weiwei. Composite of covalent organic framework-derived nitrogen-doped carbon with carbon nanotubes for lithium-storage[J]. Journal of Shanghai University(Natural Science Edition), 2020, 26(6): 972-979.
[1] |
Wang N, Bai Z C, Qian Y T, et al. Double-walled Sb@TiO$_{2}$-$x$ nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries[J]. Adv Mater, 2016,28(21):4126-4133.
pmid: 26923105 |
[2] |
Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015,7(1):19-29.
pmid: 25515886 |
[3] |
Kong S F, Dai R L, Li H, et al. Microwave hydrothermal synjournal of Ni-based metal-organic frameworks and their derived yolk-shell NiO for Li-ion storage and supported ammonia borane for hydrogen desorption[J]. ACS Sustainable Chem Eng, 2015,3(8):1830-1838.
doi: 10.1021/acssuschemeng.5b00556 |
[4] |
Pang H C, Sun W W, LV L P, et al. MOF-templated nanorice-nanosheet core-satellite iron dichalcogenides by heterogeneous sulfuration for high-performance lithium ion batteries[J]. J Mater Chem A, 2016,4(48):19179-19188.
doi: 10.1039/C6TA09060E |
[5] |
Bruno S. Recent advance in lithium ion battery materials[J]. Electrochem Acta, 2000,45(15):2461-2466.
doi: 10.1016/S0013-4686(00)00333-9 |
[6] |
Diercks C S, Yaghi O M. The atom, the molecule, and the covalent organic framework[J]. Science, 2017, 355(6328):eaal1585.
doi: 10.1126/science.aal1585 pmid: 28254887 |
[7] |
Buyukcakir O, Je S H, Talapaneni S N, et al. Charged covalent triazine frameworks for CO$_{2}$ capture and conversion[J]. ACS Appl Mater Interfaces, 2017,9(8):7209-7216.
doi: 10.1021/acsami.6b16769 pmid: 28177215 |
[8] |
Deng X, Fang Y S, Lin S, et al. Porphyrin-based porous organic frameworks as a biomimetic catalyst for highly efficient colorimetric immunoassay[J]. ACS Appl Mater Interfaces, 2017,9(4):3514-3523.
doi: 10.1021/acsami.6b15637 pmid: 28068469 |
[9] |
Li X C, Zhang Y Z, Wang C Y, et al. Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors[J]. Chem Sci, 2017,8(4):2959-2965.
doi: 10.1039/c6sc05532j pmid: 28451362 |
[10] |
Vazquez-Molina D A, Mohammad-Pour G S, Lee C, et al. Mechanically shaped two-dimensional covalent organic frameworks reveal crystallographic alignment and fast Li-ion conductivity[J]. J Am Chem Soc, 2016,138(31):9767-9770.
doi: 10.1021/jacs.6b05568 pmid: 27414065 |
[11] |
Medina D D, Petrus M L, Jumabekov A N, et al. Directional charge-carrier transport in oriented benzodithiophene covalent organic framework thin films[J]. ACS Nano, 2017,11(3):2706-2713.
doi: 10.1021/acsnano.6b07692 pmid: 28103436 |
[12] |
Lei Z D, Yang Q S, Xu Y, et al. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry[J]. Nat Commun, 2018,9(1):576.
pmid: 29422540 |
[13] |
Dai R, Sun W, Lü L P, et al. Bimetal-organic-framework derivation of ball-cactus-like Ni-Sn-P@C-CNT as long-cycle anode for lithium ion battery[J]. Small, 2017,13(27):1700521.
doi: 10.1002/smll.v13.27 |
[14] |
Li H, Su Y, Sun W W, et al. Carbon nanotubes rooted in porous ternary metal sulfide@N/S-doped carbon dodecahedron: bimetal-organic-frameworks derivation and electrochemical application for high-capacity and long-life lithium-ion batteries[J]. Adv Funct Mater, 2016,26(45):8345-8353.
doi: 10.1002/adfm.201601631 |
[15] |
Liu Y, Qiao Y, Zhang W X, et al. Coral-like $\alpha $-MnS composites with N-doped carbon as anode materials for high-performance lithium-ion batteries[J]. J Mater Chem, 2012,22(45):24026-24033.
doi: 10.1039/c2jm35227c |
[16] |
Wang Y Z, Li M, Xu L C. Polar and conductive iron carbide@N-doped porous carbon nanosheets as a sulfur host for high performance lithium sulfur batteries[J]. Chem Eng J, 2019,358:962-968.
doi: 10.1016/j.cej.2018.10.086 |
[17] |
Pan E Z, Jin Y H, Zhao C C, et al. Dopamine-derived N-doped carbon encapsulating hollow Sn$_{4}$P$_{3}$ microspheres as anode materials with superior sodium storage performance[J]. J Alloy Compd, 2018,769:45-52.
doi: 10.1016/j.jallcom.2018.07.361 |
[18] | Yan H, Li Y M, Guo X Y, et al. Synergistic supercritical water 'Wet' activated biomass carbon as high performances electrode materials for supercapacitor[J]. J Electrochem Soc, 2018,165(10):2075-2083. |
[19] |
Lu Z Y, Feng R, Zhao J, et al. Nitrogen-doped carbon nanocages as high-rate anode for lithium ion batteries[J]. Acta Chim Sinica, 2015,73(10):1013-1017.
doi: 10.6023/A15040289 |
[1] | 赵攀登, 何永超, 何新华, 冯笑笑, 浦娴娟, 程伶俐, 焦正. 双层壳结构 Co$_{\bf 2.7}\rm {\bf Cu_{0.3}O_{4}}$ 立方体复合材料的制备及锂电性能[J]. 上海大学学报(自然科学版), 2021, 27(1): 117-124. |
[2] | 朱影, 周荻雯, 唐燕, 王浩, 赵攀登, 浦娴娟, 焦正, 程伶俐. SnO$_{\boldsymbol{x}}$S$_{\boldsymbol{y}}$@PANI@rGO 复合材料的制备及其电化学性能[J]. 上海大学学报(自然科学版), 2021, 27(1): 78-85. |
[3] | 张燕锋, 蔡昌, 谈馨怡, 孙炜伟. 金属有机骨架衍生双金属氧化物的锂离性能[J]. 上海大学学报(自然科学版), 2021, 27(1): 125-132. |
[4] | 朱德伦, 彭雨晴, 白瑞成, 李爱军, 赵添婷, 孙宁霞. 锂离子电池三维多孔硅/银复合材料负极设计及性能[J]. 上海大学学报(自然科学版), 2021, 27(1): 144-153. |
[5] | 陈思, 张勇, 张雪倩, 吕丽萍. 锂离子电池负极中一步球磨硅碳材料的应用[J]. 上海大学学报(自然科学版), 2020, 26(4): 578-585. |
[6] | 高阳, 蒋永, 焦正. 中空硅球/石墨烯复合材料制备及电化学性能[J]. 上海大学学报(自然科学版), 2020, 26(4): 586-594. |
[7] | 高文凯, 严利民, 孙叠. 一种变参数模型平方根 UKF 锂离子电池SOC 估计方法[J]. 上海大学学报(自然科学版), 2020, 26(3): 413-424. |
[8] | 刘风采, 高鹏飞, 孟庆飞, 秦娟, 史伟民, 王林军. 石墨烯复合 beta-Zn4Sb3材料的热电性质[J]. 上海大学学报(自然科学版), 2020, 26(1): 95-101. |
[9] | 罗志刚, 李琦, 陈大勇, 黄守双, 胡张军, 陈志文. MnO2@ZnO/C 复合材料的制备及电化学性能[J]. 上海大学学报(自然科学版), 2020, 26(1): 132-142. |
[10] | 郜子明, 董敬余, 陈大勇, 黄守双, 胡张军, 陈志文. 金属有机骨架材料 ZnCo$_{\textbf{2}}$O$_{\textbf{4}}$/ZnO 中空纳米盒的制备及其电化学性能[J]. 上海大学学报(自然科学版), 2019, 25(6): 950-956. |
[11] | 唐旭辉, 张顺琦, 应申舜, 陈敏. 复合材料螺栓连接结构的失效行为[J]. 上海大学学报(自然科学版), 2019, 25(4): 502-515. |
[12] | 陈玥, 李凯, 彭雨晴, 李爱军, 张东升. 离子推进C/C栅极的设计与力学分析[J]. 上海大学学报(自然科学版), 2019, 25(2): 235-244. |
[13] | 符宏山, 杨敏, 任慕苏, 李红, 张家宝, 韦习成, 孙晋良. 不同试验条件下 C/C 复合材料的摩擦磨损性能[J]. 上海大学学报(自然科学版), 2018, 24(6): 947-954. |
[14] | 马奇利, 张翠霞, 王晗, 蒋瑾, 吕卫帮. 温度对碳纳米管纤维/环氧树脂界面剪切强度的影响[J]. 上海大学学报(自然科学版), 2018, 24(6): 961-967. |
[15] | 杨骁, 成博炜, 蒋志云. 纤维增强复合材料加固裂纹黏弹性梁的弯曲变形[J]. 上海大学学报(自然科学版), 2018, 24(6): 978-992. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||