Journal of Shanghai University(Natural Science Edition) ›› 2019, Vol. 25 ›› Issue (3): 389-398.doi: 10.12066/j.issn.1007-2861.2137
Special Issue: 精准与转化医学
Previous Articles Next Articles
Received:2019-04-10
															
							
															
							
															
							
																	Online:2019-06-30
															
							
																	Published:2019-06-24
															
						Contact:
								Kun WANG   
																	E-mail:wangk696@163.com
																					CLC Number:
DONG Yanhan , WANG Kun . Role of noncoding RNAs in regulation of cardiac cell death and cardiovascular diseases[J]. Journal of Shanghai University(Natural Science Edition), 2019, 25(3): 389-398.
| [1] |  
											 Konstantinidis K, Whelan R S, Kitsis R N . Mechanisms of cell death in heart disease[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012,32(7):1552-1562. 
																							 doi: 10.1161/ATVBAHA.111.224915 pmid: 22596221  | 
										
| [2] |  
											 Wang K, Zhou L Y, Wang J X , et al. E2F1-dependent miR-421 regulates mitochondrial fragmentation and myocardial infarction by targeting Pink1[J]. Nature Communications, 2015,6:7619. 
																							 doi: 10.1038/ncomms8619 pmid: 26184432  | 
										
| [3] |  
											 Boon R A, Dimmeler S . MicroRNAs in myocardial infarction[J]. Nature Reviews Cardiology, 2015,12(3):135-142. 
																							 doi: 10.1038/nrcardio.2014.207 pmid: 25511085  | 
										
| [4] |  
											 Chekulaeva M, Filipowicz W . Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells[J]. Current Opinion in Cell Biology, 2009,21(3):452-460. 
																							 doi: 10.1016/j.ceb.2009.04.009  | 
										
| [5] |  
											 Filipowicz W, Bhattacharyya S N, Sonenberg N . Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?[J]. Nature Reviews Genetics, 2008,9(2):102-114. 
																							 doi: 10.1038/nrg2290 pmid: 18197166  | 
										
| [6] |  
											 Berezikov E . Evolution of microRNA diversity and regulation in animals[J]. Nature Reviews Genetics, 2011,12(12):846-860. 
																							 doi: 10.1038/nrg3079 pmid: 22094948  | 
										
| [7] |  
											 Graves P, Zeng Y . Biogenesis of mammalian microRNAs: a global view[J]. Genomics Proteomics Bioinformatics, 2012,10(5):239-245. 
																							 doi: 10.1016/j.gpb.2012.06.004 pmid: 23200133  | 
										
| [8] |  
											 Kroemer G, Galluzzi L, Vandenabeele P , et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009[J]. Cell Death Differ, 2009,16(1):3-11. 
																							 doi: 10.1038/cdd.2008.150 pmid: 18846107  | 
										
| [9] |  
											 Bergsbaken T, Fink S L, Cookson B T . Pyroptosis: host cell death and inflammation[J]. Nature Reviews Microbiology, 2009,7(2):99-109. 
																							 doi: 10.1038/nrmicro2070 pmid: 19148178  | 
										
| [10] |  
											 Orogo A M, Gustafsson A B . Cell death in the myocardium: my heart won't go on[J]. IUBMB Life, 2013,65(8):651-656. 
																							 doi: 10.1002/iub.1180  | 
										
| [11] |  
											 Clerk A, Cullingford T E, Fuller S J , et al. Signaling pathways mediating cardiac myocyte gene expression in physiological and stress responses[J]. Journal of Cellular Physiology, 2007,212(2):311-322. 
																							 doi: 10.1002/jcp.21094 pmid: 17450511  | 
										
| [12] |  
											 Xu C, Lu Y, Pan Z , et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes[J]. Journal of Cell Science, 2007,120(Pt17):3045-3052. 
																							 doi: 10.1242/jcs.010728 pmid: 17715156  | 
										
| [13] |  
											 Matkovich S J, Wang W, Tu Y , et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts[J]. Circulation Research, 2010,106(1):166-175. 
																							 doi: 10.1161/CIRCRESAHA.109.202176 pmid: 19893015  | 
										
| [14] |  
											 Bostjancic E, Zidar N, Glavac D . MicroRNA microarray expression profiling in human myocardial infarction[J]. Disease Markers, 2009,27(6):255-268. 
																							 doi: 10.3233/DMA-2009-0671 pmid: 20075508  | 
										
| [15] |  
											 Yang B, Lin H, Xiao J , et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2[J]. Nat Med, 2007,13(4):486-491. 
																							 doi: 10.1038/nm1569 pmid: 17401374  | 
										
| [16] |  
											 Tang Y, Zheng J, Sun Y , et al. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2[J]. International Heart Journal, 2009,50(3):377-387. 
																							 doi: 10.1536/ihj.50.377 pmid: 19506341  | 
										
| [17] |  
											 Wang H, Li J, Chi H , et al. MicroRNA-181c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells[J]. Journal of Cellular and Molecular Medicine, 2015,19(9):2084-2097. 
																							 doi: 10.1111/jcmm.12563 pmid: 25898913  | 
										
| [18] |  
											 Rane S, He M, Sayed D , et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes[J]. Circulation Research, 2009,104(7):879-886. 
																							 doi: 10.1161/CIRCRESAHA.108.193102 pmid: 19265035  | 
										
| [19] |  
											 Cheng Y, Liu X, Zhang S , et al. MicroRNA-21 protects against the H$_2$O$_2$-induced injury on cardiac myocytes via its target gene PDCD4[J]. J Mol Cell Cardiol, 2009,47(1):5-14. 
																							 doi: 10.1016/j.yjmcc.2009.01.008  | 
										
| [20] |  
											 Ren X P, Wu J, Wang X , et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20[J]. Circulation, 2009,119(17):2357-2366. 
																							 doi: 10.1161/CIRCULATIONAHA.108.814145 pmid: 19380620  | 
										
| [21] |  
											 Li J, Donath S, Li Y , et al. MiR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway[J]. PLoS Genetics, 2010,6(1):e1000795. 
																							 doi: 10.1371/journal.pgen.1000795 pmid: 20062521  | 
										
| [22] |  
											 Wang J X, Gao J, Ding S L , et al. Oxidative modification of miR-184 enables it to target Bcl-xL and Bcl-w[J]. Mol Cell, 2015,59(1):50-61. 
																							 doi: 10.1016/j.molcel.2015.05.003 pmid: 26028536  | 
										
| [23] |  
											 Cassidy-Stone A, Chipuk J E, Ingerman E , et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization[J]. Developmental Cell, 2008,14(2):193-204. 
																							 doi: 10.1016/j.devcel.2007.11.019  | 
										
| [24] |  
											 Li P . MicroRNAs in cardiac apoptosis[J]. Journal of Cardiovascular Translational Research, 2010,3(3):219-224. 
																							 doi: 10.1007/s12265-010-9175-9  | 
										
| [25] |  
											 Li J, Zhou J, Li Y , et al. Mitochondrial fission controls DNA fragmentation by regulating endonuclease G[J]. Free Radical Biology& Medicine, 2010,49(4):622-631. 
																							 doi: 10.1039/c9nr08192e pmid: 31793608  | 
										
| [26] |  
											 Li J, Li Y, Jiao J , et al. Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis[J]. Molecular and Cellular Biology, 2014,34(10):1788-1799. 
																							 doi: 10.1128/MCB.00774-13  | 
										
| [27] |  
											 Frank S, Gaume B, Bergmann-Leitner E  S, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis[J]. Developmental Cell, 2001,1(4):515-525. 
																							 doi: 10.1016/s1534-5807(01)00055-7 pmid: 11703942  | 
										
| [28] |  
											 Ong S B, Subrayan S, Lim S Y , et al. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury[J]. Circulation, 2010,121(18):2012-2022. 
																							 doi: 10.1161/CIRCULATIONAHA.109.906610 pmid: 20421521  | 
										
| [29] |  
											 Wang J X, Jiao J Q, Li Q , et al. MiR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1[J]. Nat Med, 2011,17(1):71-78. 
																							 doi: 10.1038/nm.2282 pmid: 21186368  | 
										
| [30] |  
											 Dagda R K, Cherra S J, 3rd, Kulich S  M, et al. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission[J]. The Journal of Biological Chemistry, 2009,284(20):13843-13855. 
																							 doi: 10.1074/jbc.M808515200 pmid: 19279012  | 
										
| [31] |  
											 Wang K, Liu C Y, Zhang X J , et al. MiR-361-regulated prohibitin inhibits mitochondrial fission and apoptosis and protects heart from ischemia injury[J]. Cell Death Differ, 2015,22(6):1058-1068. 
																							 doi: 10.1038/cdd.2014.200 pmid: 25501599  | 
										
| [32] |  
											 Papait R, Kunderfranco P, Stirparo G G , et al. Long noncoding RNA: a new player of heart failure?[J]. Journal of Cardiovascular Translational Research, 2013,6(6):876-883. 
																							 doi: 10.1007/s12265-013-9488-6  | 
										
| [33] |  
											 Wang K C, Chang H Y . Molecular mechanisms of long noncoding RNAs[J]. Molecular Cell, 2011,43(6):904-914. 
																							 doi: 10.1016/j.molcel.2011.08.018  | 
										
| [34] |  
											 Piccoli M T, Gupta S K, Thum T . Noncoding RNAs as regulators of cardiomyocyte proliferation and death[J]. J Mol Cell Cardiol, 2015,89(PtA):59-67. 
																							 doi: 10.1016/j.yjmcc.2015.02.002 pmid: 25665459  | 
										
| [35] |  
											 Kanduri C . Kcnq1ot1: a chromatin regulatory RNA[J]. Seminars in Cell& Developmental Biology, 2011,22(4):343-350. 
																							 doi: 10.1177/0145561319879245 pmid: 31619067  | 
										
| [36] |  
											 Ishii N, Ozaki K, Sato H , et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction[J]. Journal of Human Genetics, 2006,51(12):1087-1099. 
																							 doi: 10.1007/s10038-006-0070-9  | 
										
| [37] |  
											 Grote P, Wittler L, Hendrix D , et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse[J]. Developmental Cell, 2013,24(2):206-214. 
																							 doi: 10.1016/j.devce1.2012.12.012  | 
										
| [38] |  
											 Wang K, Long B, Zhou L Y , et al. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation[J]. Nat Commun, 2014,5:3596. 
																							 doi: 10.1038/ncomms4596 pmid: 24710105  | 
										
| [39] |  
											 Hsu M T, Coca-Prados M . Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells[J]. Nature, 1979,280(5720):339-340. 
																							 doi: 10.1038/280339a0 pmid: 460409  | 
										
| [40] |  
											 Hansen T B, Jensen T I, Clausen B H , et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013,495(7441):384-388. 
																							 doi: 10.1038/nature11993  | 
										
| [41] |  
											 Wang K, Long B, Liu F , et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223[J]. Eur Heart J, 2016,37(33):2602-2611. 
																							 doi: 10.1093/eurheartj/ehv713 pmid: 26802132  | 
										
| [42] |  
											 Koseki T, Inohara N, Chen S , et al. ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998,95(9):5156-5160. 
																							 doi: 10.1073/pnas.95.9.5156 pmid: 9560245  | 
										
| [43] |  
											 Li Y Z, Lu D Y, Tan W Q , et al. P53 initiates apoptosis by transcriptionally targeting the antiapoptotic protein ARC[J]. Molecular and Cellular Biology, 2008,28(2):564-574. 
																							 doi: 10.1128/MCB.00738-07 pmid: 17998337  | 
										
| [44] |  
											 He C, Klionsky D J . Regulation mechanisms and signaling pathways of autophagy[J]. Annual Review of Genetics, 2009,43:67-93. 
																							 doi: 10.1146/annurev-genet-102808-114910 pmid: 19653858  | 
										
| [45] |  
											 Taneike M, Yamaguchi O, Nakai A , et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy[J]. Autophagy, 2010,6(5):600-606. 
																							 doi: 10.4161/auto.6.5.11947 pmid: 20431347  | 
										
| [46] |  
											 Long B, Ding S L, Liu F , et al. Autophagic program is regulated by miR-325[J]. Cell Death Differ, 2014,21(6):967-977. 
																							 doi: 10.1038/cdd.2014.18  | 
										
| [47] |  
											 Pan W, Zhong Y, Cheng C , et al. MiR-30-regulated autophagy mediates angiotensin Ⅱ-induced myocardial hypertrophy[J]. PLoS One, 2013,8(1):e53950. 
																							 doi: 10.1371/journal.pone.0053950 pmid: 23326547  | 
										
| [48] |  
											 Sciarretta S, Volpe M, Sadoshima J . Mammalian target of rapamycin signaling in cardiac physiology and disease[J]. Circulation Research, 2014,114(3):549-564. 
																							 doi: 10.1161/CIRCRESAHA.114.302022  | 
										
| [49] |  
											 Su M, Wang J, Wang C , et al. MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis[J]. Cell Death Differ, 2015,22(6):986-999. 
																							 doi: 10.1038/cdd.2014.187 pmid: 25394488  | 
										
| [50] |  
											 Li Q, Xie J, Li R , et al. Overexpression of microRNA-99a attenuates heart remodelling and improves cardiac performance after myocardial infarction[J]. Journal of Cellular & Molecular Medicine, 2014,18(5):919-928. 
																							 doi: 10.1002/ptr.6560 pmid: 31795012  | 
										
| [51] |  
											 Song L, Su M, Wang S , et al. MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1[J]. Journal of Cellular and Molecular Medicine, 2014,18(11):2266-2274. 
																							 doi: 10.1111/jcmm.12380 pmid: 25209900  | 
										
| [52] |  
											 Gupta S K, Foinquinos A, Thum S , et al. Preclinical development of a microRNA-based therapy for elderly patients with myocardial infarction[J]. Journal of the American College of Cardiology, 2016,68(14):1557-1571. 
																							 doi: 10.1016/j.jacc.2016.07.739 pmid: 27687198  | 
										
| [53] |  
											 Wang K, Liu C Y, Zhou L Y , et al. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p[J]. Nature Communications, 2015,6:6779. 
																							 doi: 10.1038/ncomms7779 pmid: 25858075  | 
										
| [54] |  
											 Wu W, Liu P, Li J . Necroptosis: an emerging form of programmed cell death[J]. Critical Reviews in Oncology/Hematology, 2012,82(3):249-258. 
																							 doi: 10.1016/j.critrevonc.2011.08.004 pmid: 21962882  | 
										
| [55] |  
											 Galluzzi L, Kepp O, Kroemer G . RIP kinases initiate programmed necrosis[J]. Journal of Molecular Cell Biology, 2009,1(1):8-10. 
																							 doi: 10.1093/jmcb/mjp007 pmid: 19679643  | 
										
| [56] |  
											 Whelan R S, Kaplinskiy V, Kitsis R N . Cell death in the pathogenesis of heart disease: mechanisms and significance[J]. Annual Review of Physiology, 2010,72:19-44. 
																							 doi: 10.1146/annurev.physiol.010908.163111 pmid: 20148665  | 
										
| [57] |  
											 Baines C P, Kaiser R A, Purcell N H , et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death[J]. Nature, 2005,434(7033):658-662. 
																							 doi: 10.1038/nature03434 pmid: 15800627  | 
										
| [58] |  
											 Nakagawa T, Shimizu S, Watanabe T , et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death[J]. Nature, 2005,434(7033):652-658. 
																							 doi: 10.1038/nature03317 pmid: 15800626  | 
										
| [59] |  
											 Wang K, An T, Zhou L Y , et al. E2F1-regulated miR-30b suppresses cyclophilin D and protects heart from ischemia/reperfusion injury and necrotic cell death[J]. Cell Death Differ, 2015,22(5):743-754. 
																							 doi: 10.1038/cdd.2014.165 pmid: 25301066  | 
										
| [60] |  
											 Liu J, Van Mil A, Vrijsen K , et al. MicroRNA-155 prevents necrotic cell death in human cardiomyocyte progenitor cells via targeting RIP1[J]. Journal of Cellular and Molecular Medicine, 2011,15(7):1474-1482. 
																							 doi: 10.1111/j.1582-4934.2010.01104.x  | 
										
| [61] |  
											 Lee E W, Kim J H, Ahn Y H , et al. Ubiquitination and degradation of the FADD adaptor protein regulate death receptor-mediated apoptosis and necroptosis[J]. Nature Communications, 2012,3:978. 
																							 doi: 10.1038/ncomms1981 pmid: 22864571  | 
										
| [62] |  
											 Wang J X, Zhang X J, Li Q , et al. MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD[J]. Circulation Research, 2015,117(4):352-363. 
																							 doi: 10.1161/CIRCRESAHA.117.305781 pmid: 26038570  | 
										
| [63] |  
											 Wang K, Liu F, Liu C Y , et al. The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873[J]. Cell Death Differ, 2016,23(8):1394-1405. 
																							 doi: 10.1038/cdd.2016.28 pmid: 27258785  | 
										
| [64] |  
											 Nishida K, Yamaguchi O, Otsu K . Crosstalk between autophagy and apoptosis in heart disease[J]. Circulation Research, 2008,103(4):343-351. 
																							 doi: 10.1161/CIRCRESAHA.108.175448 pmid: 18703786  | 
										
| [65] |  
											 Yamaguchi O, Higuchi Y, Hirotani S , et al. Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(26):15883-15888. 
																							 doi: 10.1073/pnas.2136717100 pmid: 14665690  | 
										
| [66] |  
											 Scherz-Shouval R, Shvets E, Fass E , et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4[J]. The EMBO Journal, 2007,26(7):1749-1760. 
																							 doi: 10.1038/sj.emboj.7601623 pmid: 17347651  | 
										
| [67] | Marquez R T, Xu L . Bcl-2: Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch[J]. American Journal of Cancer Research, 2012,2(2):214-221. | 
| [68] |  
											 Crighton D, Wilkinson S, O'Prey  J, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis[J]. Cell, 2006,126(1):121-134. 
																							 doi: 10.1016/j.cell.2006.05.034 pmid: 16839881  | 
										
| [69] |  
											 Diwan A, Matkovich S J, Yuan Q , et al. Endoplasmic reticulum-mitochondria crosstalk in NIX-mediated murine cell death[J]. The Journal of Clinical Investigation, 2009,119(1):203-212. 
																							 doi: 10.1172/JCI36445 pmid: 19065046  | 
										
| [70] |  
											 Whelan R S, Konstantinidis K, Wei A C , et al. Bax regulates primary necrosis through mitochondrial dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(17):6566-6571. 
																							 doi: 10.1073/pnas.1201608109  | 
										
| [71] |  
											 Li X, Zeng Z, Li Q , et al. Inhibition of microRNA-497 ameliorates anoxia/reoxygenation injury in cardiomyocytes by suppressing cell apoptosis and enhancing autophagy[J]. Oncotarget, 2015,6(22):18829-18844. 
																							 doi: 10.18632/oncotarget.4774 pmid: 26299920  | 
										
| [72] |  
											 Ham O, Lee S Y, Lee C Y , et al. Let-7b suppresses apoptosis and autophagy of human mesenchymal stem cells transplanted into ischemia/reperfusion injured heart 7by targeting caspase-3[J]. Stem Cell Research & Therapy, 2015,6:147. 
																							 doi: 10.1055/s-0039-1693923 pmid: 31795007  | 
										
| [73] |  
											 Ng F, Tang B L . Sirtuins' modulation of autophagy[J]. Journal of Cellular Physiology, 2013,228(12):2262-2270. 
																							 doi: 10.1002/jcp.24399  | 
										
| [74] |  
											 Widera C, Gupta S K, Lorenzen J M , et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome[J]. J Mol Cell Cardiol, 2011,51(5):872-875. 
																							 doi: 10.1016/j.yjmcc.2011.07.011  | 
										
| [1] | Yu SHANG, Tiantian WANG, Meiying WU, Lu WANG, Huixin HE, Jing AN. Cytotoxicity in SH-SY5Y cells induced by $O_{3}$-oxidized black carbon particles [J]. Journal of Shanghai University(Natural Science Edition), 2019, 25(4): 550-557. | 
| [2] | DING Yangnan , LÜ Shuangjie , CHEN Houzao , LIU Depei . Epigenetic regulation in vascular aging [J]. Journal of Shanghai University(Natural Science Edition), 2019, 25(3): 381-388. | 
| [3] | WANG Tianhui , XIAO Junjie . Non-coding RNAs in exercise-induced cardiac hypertrophy [J]. Journal of Shanghai University(Natural Science Edition), 2019, 25(3): 425-434. | 
| [4] | ZHU Hongwen, YU Pujiao, XU Jiahong. Role of miR-19b in protecting cardiomyocytes from apoptosis by activating Akt signaling [J]. Journal of Shanghai University(Natural Science Edition), 2019, 25(1): 10-17. | 
| [5] | LI Yuyu, JIN Youxin, XU Zhongjuan, ZHANG Shumang, SUO Guangli. Effects of ABL silencing combined with TRAIL and DOX on apoptosis of colorectal cancer HT29 cells [J]. Journal of Shanghai University(Natural Science Edition), 2018, 24(1): 134-141. | 
| [6] | GAO Feng1,2, CHEN Jinghai1,2. Non-coding RNAs mediate cardiac remodeling and regeneration [J]. Journal of Shanghai University(Natural Science Edition), 2016, 22(3): 302-309. | 
| [7] | WANG Jianxun1, GAO Jinning1, DING Wei2. Non-coding RNAs and myocardial remodeling [J]. Journal of Shanghai University(Natural Science Edition), 2016, 22(3): 310-317. | 
| [8] | SHI Wei-Gang, LIAO Xian-Yan, WENG Xin-Chu. Effect of tanshinone ⅡA on UVA-induced apoptosis of HaCaT [J]. Journal of Shanghai University(Natural Science Edition), 2015, 21(6): 757-765. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
