上海大学学报(自然科学版) ›› 2020, Vol. 26 ›› Issue (1): 1-20.doi: 10.12066/j.issn.1007-2861.2206
• 特邀综述 • 下一篇
收稿日期:
2020-01-11
出版日期:
2020-02-29
发布日期:
2020-02-10
通讯作者:
翟启杰
E-mail:qjzhai@shu.edu.cn
基金资助:
Received:
2020-01-11
Online:
2020-02-29
Published:
2020-02-10
Contact:
Qijie ZHAI
E-mail:qjzhai@shu.edu.cn
摘要:
人类社会的发展对金属材料的质量提出了更高的要求, 洁净化和均质化成为金属制品质量的共同追求目标. 物理科学与技术的发展为材料制备技术的进步提供了新的机遇. 脉冲电流和脉冲磁场由于瞬时能量高且线路负荷小, 近年来在金属制备中的应用受到普遍关注. 首先介绍了脉冲电流和脉冲磁场在金属熔体中的电磁效应, 然后重点介绍了电流、磁场、电磁力在金属熔体中的分布以及脉冲电磁场对熔体流动的影响, 最后简要介绍了脉冲电磁场在金属洁净化和细晶化方面的研究与工业应用.
中图分类号:
徐燕祎, 翟启杰. 脉冲电磁场在金属熔体中的电磁效应及其应用[J]. 上海大学学报(自然科学版), 2020, 26(1): 1-20.
Yanyi XU, Qijie ZHAI. Electromagnetic effect of pulsed electromagnetic field in molten metals and its applications[J]. Journal of Shanghai University(Natural Science Edition), 2020, 26(1): 1-20.
[1] | Chen C Y, Jiang Z H, Li Y , et al. State of the art in the control of inclusions in tire cord steels and saw wire steels: a review[J]. Steel Research International, 2020(1):1800547. |
[2] | 张立峰 . 钢水洁净化的理论与实践 [C]//2014 年全国炼钢-连铸生产技术会论文集. 2014: 268-280. |
[3] | Guan R G, Tie D . A review on grain refinement of aluminum alloys: progresses, challenges and prospects[J]. Acta Metallurgica Sinica: English Letters, 2017,30(5):409-432. |
[4] | Cao Y Z, Wang Q, Li G J , et al. Effects of high magnetic field on the structure evolution, magnetic and electrical properties of the molecular beam vapor deposited Fe$_{x}$Ni$_{1-x}$(0.3$\le x\le $ 0.8)[J]. Journal of Magnetism and Magnetic Materials, 2013,332:38-43. |
[5] | Kai W, Wang Q, Wang C J , et al. Formation of aligned two-phase microstructure in Fe-0.25mass%C alloy under gradient high magnetic fields[J]. Materials Letters, 2008,62(10/11):1466-1468. |
[6] | Zonouzi S A, Khodabandeh R, Safarzadeh H , et al. Experimental investigation of the flow and heat transfer of magnetic nanofluid in a vertical tube in the presence of magnetic quadrupole field[J]. Experimental Thermal and Fluid Science, 2018,91:155-165. |
[7] | Li Q S, Song C S, Li H B , et al. Effect of pulsed magnetic field on microstructure of 1Cr18Ni9Ti austenitic stainless steel[J]. Materials Science and Engineering: A, 2007,466(1/2):101-105. |
[8] | Liao X L, Zhai Q J, Luo J , et al. Refining mechanism of the electric current pulse on the solidification structure of pure aluminum[J]. Acta Materialia, 2007,55(9):3103-3109. |
[9] | Gong Y Y, Luo J, Jing J X , et al. Structure refinement of pure aluminum by pulse magneto-oscillation[J]. Materials Science and Engineering: A, 2008,497(1/2):147-152. |
[10] | Zhang Y H, Rabiger D, Eckert S . Solidification of pure aluminium affected by a pulsed electrical field and electromagnetic stirring[J]. Journal of Materials Science, 2016,51(4):2153-2159. |
[11] | Sun J, Sheng C, Wang D P , et al. Fine equiaxed dendritic structure of a medium carbon steel cast using pulsed magneto-oscillation melt treatment[J]. Advances in Manufacturing, 2018,6(2):189-194. |
[12] | Luo T J, Ji H M, Cui J , et al. As-cast structure and tensile properties of AZ80 magnesium alloy DC cast with low-voltage pulsed magnetic field[J]. Transactions of Nonferrous Metals Society of China, 2015,25(7):2165-2171. |
[13] | Ji H M, Luo T J, Wang C , et al. Direct chill casting of magnesium alloy under pulsed magnetic field[J]. Materials Science and Technology, 2017,33(1):33-39. |
[14] | Zhang L M, Liu H N, Li N , et al. The relevance of forced melt flow to grain refinement in pure aluminum under a low-frequency alternating current pulse[J]. Journal of Materials Research, 2016,31(3):396-404. |
[15] | Li N, Zhang L M, Zhang R , et al. Research on grain refinement in hypoeutectic Al-Si alloy during solidification under an alternating electric current pulse[J]. Metals, 2019,9:571. |
[16] | Li J, Ma J H, Gao Y L , et al. Research on solidification structure refinement of pure aluminum by electric current pulse with parallel electrodes[J]. Materials Science and Engineering: A, 2008,490(12):452-456. |
[17] | 郭硕鸿 . 电动力学[M]. 3 版. 北京: 高等教育出版社, 2008: 110-111. |
[18] | Gao Y L, Li Q S, Gong Y Y , et al. Comparative study on structural transformation of low-melting pure Al and high-melting stainless steel under external pulsed magnetic field[J]. Materials Letters, 2007,61(18):4011-4014. |
[19] | 梁灿彬, 秦光戎, 梁竹健 . 电磁学[M]. 2 版. 北京: 高等教育出版社, 2004: 154-155. |
[20] | 廖希亮 . 脉冲电流对金属凝固组织的影响[D]. 上海: 上海大学, 2007: 12. |
Liao X L . Effect of electric current pulse on solidification structure of metal[D]. Shanghai: Shanghai University, 2007: 12. | |
[21] | Casimir H, Ubbink J . The skin effct: introduction the current distribution for various configurations[J]. Philips Technical Review, 1967,28:271-283. |
[22] | 林建忠, 阮晓东, 陈国邦 , 等. 流体力学[M]. 北京: 清华大学出版社, 2005: 81-88. |
[23] | Nikrityuk P A, Eckert K, Grundmann R , et al. An impact of a low voltage steady electrical current on the solidification of a binary metal alloy: a numerical study[J]. Steel Research International, 2007,78(5):402-408. |
[24] | Zhang Y, Ding H S, Jiang S Y , et al. Numerical simulation of electro-magnetic and flow fields of TiAl melt under electric field[J]. China Foundry, 2010,7(3):241-247. |
[25] | Xu Z S, Wang X, Liang D , et al. Electric current pulse induced grain refinement in pure aluminium[J]. Materials Science and Technology, 2015,31(13A):1595-1600. |
[26] | 张震斌, 王建中, 曹力生 , 等. 电脉冲作用下 Al-5%Cu 熔体内电场分布规律[J]. 辽宁工程技术大学学报(自然科学版), 2008(1):158-160. |
Zhang Z B, Wang J Z, Cao L S , et al. Investigation of electric field distribution rule in Al-5%Cu melt under electric pulse[J]. Journal of Liaoning Technical University (Natural Science), 2008(1):158-160. | |
[27] | 张荣, 李玲珍, 何鹏 , 等. 脉冲电流作用下钢液中电磁场分布的数值计算 [C]//第四届冶金工程科学论坛论文集. 2005: 367-371. |
[28] | 马静超, 那贤昭 . 脉冲电流作用下金属熔体内电磁场分布的数值模拟[J]. 钢铁研究学报, 2012,24(1):10-14. |
Ma J C, Na X Z . Numerical simulation of the electromagnetic field in molten metal under electric current pulse[J]. Journal of Iron and Steel Research, 2012,24(1):10-14. | |
[29] | Li X B, Lu F G, Cui H C , et al. Effect of electric current pulse on flow behaviour of Al melt in parallel electrode process[J]. Materials Science and Technology, 2013,29(2):226-233. |
[30] | Li X B, Lu F G, Cui H C , et al. Migration behavior of solidification nuclei in pure Al melt under effect of electric current pulse[J]. Transactions of Nonferrous Metals Society of China, 2014,24(1):192-198. |
[31] | Räbiger D, Zhang Y, Galindo V , et al. The relevance of melt convection to grain refinement in Al-Si alloys solidified under the impact of electric currents[J]. Acta Materialia, 2014,79:327-338. |
[32] | Zhang Y H, Xu Y Y, Ye C Y , et al. Relevance of electrical current distribution to the forced flow and grain refinement in solidified Al-Si hypoeutectic alloy[J]. Scientific Reports, 2018,8(1):3242. |
[33] | Davidson P A. An introduciton to magnetohydrodynamics [M]. New York: Cambridge University Press, 2001: 391-393. |
[34] | Asai S . Birth and recent activities of electromagnetic processing of materials[J]. ISIJ International, 1989,29(12):981-992. |
[35] | Kolesnichenko A F, Podoltsev A D, Kucheryavaya I N . Action of pulse magnetic field on molten metal[J]. ISIJ International, 1994,34(9):715-721. |
[36] | Zi B T, Wang H, Xu G M , et al. Finite-element numerical simulation of pulsed magnetic flux density and Lorentz force[J]. Rare Metal Materials and Engineering, 2003,32(9):689-692. |
[37] | Zi B T, Yao K F, Wang H , et al. Numerical simulation of solidification under pulsed magnetic fields[J]. Rare Metal Materials and Engineering, 2002,31(5):334-336. |
[38] | Teng Y F, Feng X H, Li Y J , et al. Grain refinement of as cast superalloy K4169 solidified with low voltage pulsed magnetic field[J]. Materials Research Innovations, 2014,18:352-356. |
[39] | Li Y J, Teng Y F, Yang Y S . Refinement mechanism of low voltage pulsed magnetic field on solidification structure of silicon steel[J]. Metals and Materials International, 2014,20(3):527-530. |
[40] | 杨院生, 付俊伟, 罗天骄 , 等. 镁合金低压脉冲磁场晶粒细化[J]. 中国有色金属学报, 2011,21(10):2639-2649. |
Yang Y S, Fu J W, Luo T J , et al. Grain refinement of magnesium alloys under low-voltage pulsed magnetic field[J]. The Chinese Journal of Nonferrous Metals, 2011,21(10):2639-2649. | |
[41] | Chen G J, Zhang Y J, Yang Y S . Modelling the unsteady melt flow under a pulsed magnetic field[J]. Chinese Physics B, 2013,22(12):337-341. |
[42] | Ma X P, Yang Y Y, Wang B . Effect of pulsed magnetic field on superalloy melt[J]. International Journal of Heat and Mass Transfer, 2009,52(23/24):5285-5292. |
[43] | Chen Q P, Shen H F . Numerical study on solidification characteristics under pulsed magnetic field[J]. International Journal of Heat and Mass Transfer, 2018,120:997-1008. |
[44] | 刘芳, 张璐云 . 脉冲磁致振荡对纯铝熔体电磁力和流场影响的数值模拟[J]. 热加工工艺, 2012,41(17):48-51. |
Liu F, Zhang L Y . Numerical simulation of effect of pulse magneto-oscillation on magnetic force and flow field of pure aluminum melt[J]. Hot Working Technology, 2012,41(17):48-51. | |
[45] | 刘芳, 张璐云 . 脉冲磁致振荡下纯铝凝固磁场与流场分布的数值模拟[J]. 铸造, 2012,61(3):285-290. |
Liu F, Zhang L Y . Numerical simulation of magnetic field and flow field distributions during pure aluminum solidification under pulse magneto-oscillation[J]. Foundry, 2012,61(3):285-290. | |
[46] | Wang X, Xu Z S, Wang Q X, et al. The effect of pulse width on the characteristic of discharge and flow for pure aluminum [C]// CFD Modeling and Simulation in Materials Processing 2016. 2016:263-270. |
[47] | Zhao J, Cheng Y F, Han K , et al. Numerical and experimental studies of surface-pulsed magneto-oscillation on solidification[J]. Journal of Materials Processing Technology, 2016,229:286-293. |
[48] | 赵静, 徐智帅 . HPMO 作用下铸锭内部电磁场、流场和温度场的数值模拟[J]. 上海金属, 2018,40(3):90-94. |
Zhao J, Xu Z S . Numerical simulation of electromagnetic, flow and temperature distribution during ingot solidification process under HPMO[J]. Shanghai Metals, 2018,40(3):90-94. | |
[49] | Zhao J, Yu J H, Han K , et al. Improving the solidified structure by optimization of coil configuration in pulsed magneto-oscillation[J]. Acta Metallurgica Sinica: English Letters, 2018,31(12):1334-1344. |
[50] | 郝军利, 赵静, 仲红刚 , 等. PMO 作用下连铸二冷区电磁场-流场-温度场的数值模拟[J]. 上海大学学报(自然科学版), 2018,24(3):412-421. |
Hao J L, Zhao J, Zhong H G , et al. Coupled numerical simulation on electromagnetic field, flow field and temperature field in round billet secondary cooling zone with PMO[J]. Journal of Shanghai University (Natural Science Edition), 2018,24(3):412-421. | |
[51] | Jia Y H, Wang H, Le Q C . Transient coupling simulation of multi-physical field during pulse electromagnetic direct-chill casting of AZ80 magnesium alloy[J]. International Journal of Heat and Mass Transfer, 2019,143:118524. |
[52] | Wang H, Jia Y H, Le Q C , et al. Transient numerical simulation of solidification characteristic under differential phase pulsed magnetic field[J]. Computational Materials Science, 2020,172:109261. |
[53] | Jia Y H, Chen X R, Le Q C , et al. Numerical study on action of HMF, PMF, DHMF, and DPMF on molten metal during electromagnetic casting[J]. International Journal of Advanced Manufacturing Technology, 2019,103(1/2/3/4):201-217. |
[54] | Li H, Liu S C, Jie J C , et al. Effect of pulsed magnetic field on the grain refinement and mechanical properties of 6063 aluminum alloy by direct chill casting[J]. International Journal of Advanced Manufacturing Technology, 2017,93(9/10/11/12):3033-3042. |
[55] | Zhang X, Qin R S . Separation of electrically neutral non-metallic inclusions from molten steel by pulsed electric current[J]. Materials Science and Technology, 2017,33(12):1399-1403. |
[56] | Li H C, Liu Z, Li R X , et al. Distribution of nonmetallic inclusions in molten steel under hot-top pulsed magneto-oscillation treatment[J]. Journal of Iron and Steel Research International, 2018,25(7):1-10. |
[57] | Gong Y Y, Cheng S M, Zhong Y Y , et al. Influence of electromagnetic parameters on solidification structure of pure Al in the case of identical power[J]. Journal of Iron and Steel Research International, 2018,25(8):854-861. |
[58] | Sun J, Sheng C, Wang D P , et al. Influence of pulsed magneto-oscillation on microstructure and mechanical property of rectangular 65Mn steel ingot[J]. Journal of Iron and Steel Research International, 2018,25(8):862-866. |
[59] | Li J, Ma J H, Song C J , et al. Columnar to equiaxed transition during solidification of small ingot by using electric current pulse[J]. Journal of Iron and Steel Research International, 2009,16(6):7-12. |
[60] | Li H C, Liu Y X, Zhang Y H , et al. Effects of hot top pulsed magneto-oscillation on solidification structure of steel ingot[J]. China Foundry, 2018,15(2):110-116. |
[61] | Barnak J P, Sprecher A F, Conrad H . Colony (grain) size reduction in eutectic Pb-Sn castings by electroplusing[J]. Scripta Metallurgica et Materialia, 1995,32(6):879-884. |
[62] | Zhao Z L, Wang J L, Liu L . Grain refinement by pulse electric discharging and undercooling mechanism[J]. Materials and Manufacturing Processes, 2011,26(2):249-254. |
[63] | 秦荣山, 周本濂 . 直接晶化法制备块状纳米材料的探索: 脉冲电流作用下金属熔体结晶晶粒尺寸的理论估算[J]. 材料研究学报, 1997(1):69-72. |
Qin R S, Zhou B L . Study on the preparation of bulk nanomaterials by direct crystallization: theoretical estimation of crystal grain size of molten metal under pulse current[J]. Chinese Journal of Meterials Research, 1997(1):69-72. | |
[64] | Nakada M, Shiohara Y, Flemings M C . Modification of solidification structures by pulse electric discharging[J]. ISIJ International, 1990,30(1):27-33. |
[65] | Campanella T, Charbon C, Rappaz M . Grain refinement induced by electromagnetic stirring: a dendrite fragmentation criterion[J]. Metallurgical and Materials Transactions A, 2004,35(10):3201-3210. |
[66] | Liotti E, Lui A, Vincent R , et al. A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al-15Cu alloy[J]. Acta Materialia, 2014,70:228-239. |
[67] | 王建中, 苍大强, 唐勇 , 等. 电脉冲孕育处理对 Al-5.0%Cu 合金凝固结构的影响[J]. 铸造, 1999(5):6-9. |
Wang J Z, Cang D Q, Tang Y , et al. Effects of electronpulse inoculation treatment on the solidified structre of Al-5.0%Cu[J]. Foundry, 1999(5):6-9. | |
[68] | Wang B, Yang Y S, Zhou J X , et al. Microstructure refinement of AZ91D alloy solidified with pulsed magnetic field[J]. Transactions of Nonferrous Metals Society of China, 2008,18(3):536-540. |
[69] | 秦荣山, 鄢红春, 何冠虎 , 等. 直接晶化法制备块状纳米材料的探索: 脉冲电流作用下无序金属介质的成核理论[J]. 材料研究学报, 1995(3):219-222. |
Qin R S, Yan H C, He G H , et al. Study on the preparation of bulk nanomaterials by direct crystallization: nucleation theory of disordered metal medium under pulse current[J]. Chinese Journal of Meterials Research, 1995(3):219-222. | |
[70] | 张云虎, 仲红刚, 翟启杰 . 脉冲电磁场凝固组织细化和均质化技术研究与应用进展[J]. 钢铁研究学报, 2017,29(4):249-260. |
Zhang Y H, Zhong H G, Zhai Q J . Research progress of grain refinement and homogenization of solidified metal alloys driven by pulsed electromagnetic fields[J]. Journal of Iron and Steel Research, 2017,29(4):249-260. | |
[71] | Wang T M, Xu J J, Xiao T Q , et al. Evolution of dendrite morphology of a binary alloy under an applied electric current: an in situ observation[J]. Physical Review E, 2010,81(4):042601. |
[72] | Zhang X F, Lu W J, Qin R S . Removal of MnS inclusions in molten steel using electropulsing[J]. Scripta Materialia, 2013,69(6):453-456. |
[73] | Qin R S, Rahnama A, Lu W J , et al. Electropulsed steels[J]. Materials Science and Technology, 2014,30(9):1040-1044. |
[74] | Zhang X F, Lu W J, Qin R S . Morphology and distribution control of MnS inclusions in molten steel by electropulsing[J]. Materials Research Innovations, 2014,18:244-248. |
[75] | 曹同友, 翟启杰, 李仁兴 , 等. 磁致振荡对 65Mn 钢铸锭内部组织的影响[J]. 钢铁研究, 2014,42(6):35-37. |
Cao T Y, Zhai Q J, Li R X , et al. Effect of magnetic oscillation on inner structure of 65Mn steel[J]. Research on Iron and Steel, 2014,42(6):35-37. | |
[76] | 程勇, 徐智帅, 周湛 , 等. PMO 凝固均质化技术在连铸 GCr15 轴承钢生产中的应用[J]. 上海金属, 2016,38(4):54-57. |
Cheng Y, Xu Z S, Zhou Z , et al. Application of PMO solidification homogenization technology in continuous casting production of GCr15 bearing steel[J]. Shanghai Metals, 2016,38(4):54-57. | |
[77] | 仲红刚, 刘海宁, 徐智帅 , 等. 脉冲磁致振荡凝固均质化技术及装备[J]. 钢铁, 2019,54(8):174-180. |
Zhong H G, Liu H N, Xu Z S , et al. Solidification homogenizing technology and equipment of pulse magneto-oscillation[J]. Iron and Steel, 2019,54(8):174-180. | |
[78] | 刘海宁, 王郢, 李仁兴 , 等. PMO凝固均质化技术在20CrMnTi齿轮钢上的应用[J]. 钢铁, 2019,54(6):69-78. |
Liu H N, Wang Y, Li R X , et al. Application of pulse magneto-oscillation homogenization technique on continuous casting of 20CrMnTi gear steel[J]. Iron and Steel, 2019,54(6):69-78. | |
[79] | 张伶玲, 石昊, 徐衡 , 等. PMO 对连铸 GCr15 轴承钢枝晶生长的影响[J]. 上海金属, 2019,41(5):73-80. |
Zhang L L, Shi H, Xu H , et al. Influence of PMO on dendrite growth of GCr15 bearing steel during continuous casting[J]. Shanghai Metals, 2019,41(5):73-80. | |
[80] | 朱富强, 任振海, 陈占领 , 等. 采用脉冲磁致振荡技术提高矩形 AM2 锚链钢连铸坯的均匀性[J]. 上海金属, 2019,41(3):96-100. |
Zhu F Q, Ren Z H, Chen Z L , et al. Improvement in homogeneity of continuously cast rectangular billets of AM2 anchor steel by pulse magneto-oscillation technology[J]. Shanghai Metals, 2019,41(3):96-100. | |
[81] | 徐衡, 李莉娟, 蔡常青 , 等. 应用结晶器 PMO 提高连铸小方坯质量研究[J]. 上海金属, 2019,41(4):75-79. |
Xu H, Li L J, Cai C Q , et al. Study on improving quality of continuous casting billet by using mould PMO[J]. Shanghai Metals, 2019,41(4):75-79. | |
[82] | 翟启杰, 龚永勇, 高玉来 , 等. 磁致振荡细化金属凝固组织的方法及其装置: CN 1319682C[P]. 2007-06-06. |
[83] | 徐智帅, 龚永勇, 王翔 , 等. 移动型脉冲磁致振荡细化金属凝固组织方法: CN 201610163258.2[P]. 2016-03-19. |
[84] | 翟启杰, 梁冬, 梁柱元 , 等. 脉冲磁致振荡和细化剂复合细化金属凝固组织的方法: CN 04399951A[P]. 2015-03-11. |
[85] | 翟启杰, 李萌蘖, 俞基浩 , 等. 冒口脉冲磁致振荡细化金属凝固组织方法: CN 104439195A[P]. 2015-03-25. |
[86] | 梁柱元, 梁冬, 李祺欣 , 等. 在脉冲磁致振荡处理工艺中连续测量金属熔体温度的装置: CN 103586442A[P]. 2014-02-19. |
[87] | 翟启杰, 徐智帅, 孙俊杰 , 等. 复合型脉冲磁致振荡细化金属凝固组织方法: CN 103962532A[P]. 2014-08-06. |
[88] | 龚永勇, 翟启杰, 李博 , 等. 脉冲磁致液面振荡细化金属凝固组织的方法: CN 101920333A[P]. 2010-12-22. |
[89] | 翟启杰, 龚永勇, 高玉来 , 等. 磁致振荡细化金属凝固组织的方法及其装置: CN 1757463[P]. 2006-04-12. |
[90] | 科技部. 2017 年度国家技术发明奖获奖项目目录[EB/OL]. ( 2018- 01- 08)[2019-12-18]. http://www.most.gov.cn/ztzl/gjkxjsjldh/jldh2017/jldh17jlgg/201801/t20180103_137372.htm . |
[1] | 曹洋, 郭锐, 何盛亚, 李传军, 玄伟东, 王江, 任忠鸣. 稳态磁场对液体润湿角的影响[J]. 上海大学学报(自然科学版), 2019, 25(2): 215-221. |
[2] | 郝军利, 赵静, 仲红刚, 徐智帅, 李仁兴, 翟启杰. PMO作用下连铸二冷区电磁场-流场-温度场的数值模拟[J]. 上海大学学报(自然科学版), 2018, 24(3): 412-421. |
[3] | 朱宏达, 雷作胜, 郭加宏. 高频调幅交变电磁场中金属液滴悬浮振荡特性的数值模拟分析[J]. 上海大学学报(自然科学版), 2018, 24(2): 249-256. |
[4] | 徐渊, 宋文祥, 冯九一, 杨影. 三电平逆变器电流谐波最小PWM 方法[J]. 上海大学学报(自然科学版), 2017, 23(5): 690-701. |
[5] | 周然, 樊亚夫, 邓康, 张振强, 任忠鸣. 电磁制动下板坯连铸结晶器内金属流场三维模拟的基本流态与主流场分析[J]. 上海大学学报(自然科学版), 2016, 22(6): 701-709. |
[6] | 马全问, 肖中银, 徐晓雪, 徐文杰, 马孝龙, 刘德君, 王子华. PMC边界手征负折射平板波导模式特性及场分布[J]. 上海大学学报(自然科学版), 2015, 21(5): 579-587. |
[7] | 屠挺生, 邓康, 张振强, 任忠鸣. 行波磁场对板坯连铸结晶器内钢水流态的影响[J]. 上海大学学报(自然科学版), 2015, 21(1): 20-27. |
[8] | 宋文祥, 阮智勇, 朱洪志, 周杰. 异步电机低开关频率的模型预测直接电流控制[J]. 上海大学学报(自然科学版), 2013, 19(6): 647-653. |
[9] | 张义凯1, 廖鲜艳1, 吴正钧2, 侯建平2, 翁新楚1. 低频脉冲磁场对干酪乳杆菌 LC2W 的作用[J]. 上海大学学报(自然科学版), 2013, 19(6): 641-646. |
[10] | 常同旭, 贾皓, 张振强, 邓康, 任忠鸣. 板坯连铸电磁制动下结晶器内金属流场的数学物理模拟[J]. 上海大学学报(自然科学版), 2013, 19(6): 556-561. |
[11] | 周晓兰, 刘财喜, 董宇红. 湍流二元电解质流动和传质特性的数值模拟[J]. 上海大学学报(自然科学版), 2013, 19(2): 186-190. |
[12] | 洪晓彤, 廖鲜艳, 翁新楚. 超强静磁场照射对小鼠抗氧化和免疫能力的影响[J]. 上海大学学报(自然科学版), 2012, 18(6): 651-655. |
[13] | 吴明亮,沈文辉,薛昌韡,梅冠香. T形线散射电流的麦克斯韦电路[J]. 上海大学学报(自然科学版), 2011, 17(2): 132-137. |
[14] | 李传军,任忠鸣. 强磁场下相变研究进展[J]. 上海大学学报(自然科学版), 2011, 17(1): 21-34. |
[15] | 李莉娟,刘立华,夏强强,翟启杰. 脉冲磁场退火对取向硅钢磁性能的影响[J]. 上海大学学报(自然科学版), 2011, 17(1): 35-38. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||