[1] Zhou S N, Wang M H, Wei S X, et al. Precise regulation of CO2 packing pattern in s-block metal doped single-layer covalent organic frameworks for high-performance CO2 capture and separation [J]. Chemical Engineering Journal, 2022, 441: 135903. [2] Yuan F, Yang Z F, Zhang X Y, et al. Judicious design functionalized 3D-COF to enhance CO2 adsorption and separation [J]. Journal of Computational Chemistry, 2021, 42(13): 888-896. [3] Lu Y, Zhang B X, Fu Y B, et al. Chemical engineering of triazine and β-ketoenamine units in covalent organic frameworks with synergistic effects for boosting C2H2 and CO2 separation [J]. Journal of Materials Chemistry A, 2025, 13(28): 22445-22452. [4] Mishra B, Alam A, Chakraborty A, et al. Covalent organic frameworks for photocatalysis [J]. Advanced Materials, 2024, 2024: 2413118. [5] Chen Y Z, Jiang D L. Photocatalysis with covalent organic frameworks [J]. Accounts of Chemical Research, 2024, 57(21): 3182-3193. [6] Du Y J, Jiao J W, Zhang Z Y, et al. Recent advances in covalent organic frameworks as photocatalysts for organic transformations [J]. Journal of Environmental Chemical Engineering, 2025, 13(3): 116253. [7] Yue Y, Ji D Z, Liu Y Q, et al. Chemical sensors based on covalent organic frameworks [J]. Chemistry-A European Journal, 2024, 30(3): e202302474. [8] Li Y J, Chen M H, Han Y N, et al. Fabrication of a new corrole-based covalent organic framework as a highly efficient and selective chemosensor for heavy metal ions [J]. Chemistry of Materials, 2020, 32(6): 2532-2540. [9] Ajay R R, Naveen T B, Durgalakshmi D. Covalent organic frameworks: pioneering remediation solutions for organic pollutants [J]. Chemosphere, 2024, 346: 140655. [10] Bi R X, Liu X, Peng Z H, et al. Covalent bonding confining polyoxometalates in covalent organic frameworks for efficiently capturing uranium [J]. Separation and Purification Technology, 2024, 330: 125333. [11] Wang Z Q, Hu J, Lu Z G. Covalent organic frameworks as emerging battery materials [J]. Batteries & Supercaps, 2023, 6(4): e202200545. [12] Kim Y, Li C, Huang J, et al. Ionic covalent organic framework solid-state electrolytes [J]. Advanced Materials, 2024, 36(40): 2407761. [13] Peng X Y, Baktash A, Huang Y X. Multi-redox covalent organic frameworks for aluminium organic batteries [J]. Energy Storage Materials, 2024, 71: 103674. [14] Jin J, Guo M Y, Liu J M, et al. Graphdiyne nanosheet-based drug delivery platform for photothermal/chemotherapy combination treatment of cancer [J]. ACS Applied Materials & Interfaces, 2018, 10(10): 8436-8442. [15] Min H, Qi Y Q, Zhang Y L, et al. A graphdiyne oxide-based iron sponge with photothermally enhanced tumor-specific fenton chemistry [J]. Advanced Materials, 2020, 32(31): e2000038. [16] Guo M Y, Liu J, Chen X, et al. Graphdiyne oxide nanosheets reprogram immunosuppressive macrophage for cancer immunotherapy [J]. Nano Today, 2022, 45: 101543. [17] Huo B Y, Meng F Q, Yang J W, et al. High efficiently piezocatalysis degradation of tetracycline by few-layered MoS2/GDY: mechanism and toxicity evaluation [J]. Chemical Engineering Journal, 2022, 436: 135173. [18] Shi G, Xie Y L, Du L L, et al. Constructing Cu-C bonds in a graphdiyne-regulated Cu singleatom electrocatalyst for CO2 reduction to CH4 [J]. Angewandte Chemie International Edition, 2022, 61(23): e202203569. [19] Guo X, Li Y, Huang H, et al. Triazine-graphdiyne with well defined two kinds of active sites for simultaneous detection of Pb2+ and Cd2+ [J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107159. [20] Zhao F, Li X, He J, et al. Preparation of hierarchical graphdiyne hollow nanospheres as anode for lithium-ion batteries [J]. Chemical Engineering Journal, 2021, 413: 127486. [21] Yang Q, Li L, Hussain T, et al. Stabilizing interface pH by N-modifled graphdiyne for dendritefree and high-rate aqueous Zn-ion batteries [J]. Angewandte Chemie International Edition, 2022, 61(6): e202112304. [22] Yue Y, Xu Y J, Kong F A, et al. Bulk-synthesis and supercapacitive energy storage applications of nanoporous triazine-based graphdiyne [J]. Carbon, 2020, 167: 202-208. [23] Jiang J L, Liu J S, Zheng X Y, et al. Tailoring a fast ion-conducting substrate with competitive adsorption for dendrite-free lithium/potassium metal batteries [J]. Angewandte Chemie International Edition, 2025, 64(37): e202510178. [24] Shen C, Duan Q M, Li M, et al. Superstructure regulation and transition-metal migration suppression for highly stable Li-rich Mn-based cathode materials by anti-site Mg doping strategy [J]. Chemical Engineering Journal, 2025, 512: 162206. [25] Luo X X, Li W H, Liang H J, et al. Covalent organic framework with highly accessible carbonyls and p-cation effect for advanced potassium-ion batteries [J]. Angewandte Chemie International Edition, 2022, 61(10): e202117661. [26] Zhang Y N, Shan C, Chen Z, et al. Engineering 4-connecting 3D covalent organic frameworks with oriented Li+ channels for high-performance solid-state electrolyte in lithium metal battery [J]. Small, 2025, 21(23): 2502407. [27] 徐毅, 崔致远, 吴凡, 等. 共价有机骨架/碳纳米管复合材料中锂离子吸附与传输特性的分子模拟[J]. 上海大学学报(自然科学版), 2022, 28(1): 91-101. [28] 徐毅, 孙怡雯, 孙怿, 等. 锂离子在共价有机骨架/石墨烯复合材料中的吸附与传输特性[J]. 上海大学学报(自然科学版), 2024, 30(6): 1040-1052. [29] Ding S Y, Gao J, Wang Q, et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction [J]. Journal of the American Chemical Society, 2011, 133(49): 19816-19822. [30] Fang L, Cao X R, Cao Z X. Covalent organic framework with high capacity for the lithium ion battery anode: insight into intercalation of Li from first-principles calculations [J]. Journal of Physics-Condensed Matter, 2019, 31(20): 205502. [31] Mohtat P, Lee S, Siegel J, et al. Reversible and irreversible expansion of lithium-ion batteries under a wide range of stress factors [J]. Journal of the Electrochemical Society, 2021, 168(10): 100520. [32] Prado A Y R, Rodrigues M T F, Trask S E, et al. Electrochemical dilatometry of Si-bearing electrodes: dimensional changes and experiment design [J]. Journal of the Electrochemical Society, 2020, 167(16): 160551. [33] Aydinol M K, Kohan A F, Ceder G. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides [J]. Physical Review B, 1997, 56(3): 1354-1365. [34] Courtney I A, Tse J S, Mao O, et al. Ab initio calculation of the lithium-tin voltage profile [J]. Physical Review B, 1998, 58(23): 15583-15588. |