上海大学学报(自然科学版) ›› 2011, Vol. 17 ›› Issue (1): 103-110.doi: 10.3969/j.issn.1007-2861.2011.

• 数理化科学 • 上一篇    

基于核密度估计的图像平滑的最优停止

李毅,王远弟   

  1. (上海大学 理学院,上海 200444)
  • 收稿日期:2009-09-15 出版日期:2011-02-28 发布日期:2011-02-28
  • 通讯作者: 王远弟(1965~),男,副教授,博士,研究方向为偏微分方程、数字图像处理等. ydwang@mail.shu.edu.cn E-mail:ydwang@mail.shu.edu.cn
  • 基金资助:

    国家自然科学基金资助项目(10572080,10671118)

Optimal Stopping for Image Smoothing Based on Kernel Density Estimation

LI Yi,WANG Yuan-di   

  1. (College of Sciences, Shanghai University, Shanghai 200444, China)
  • Received:2009-09-15 Online:2011-02-28 Published:2011-02-28

摘要:

运用偏微分方程进行图像平滑的过程中,迭代的最佳停止次数一直都是研究重点.利用随机变量之间的独立性,提出一个基于核密度估计的最优停止准则.该准则能获得准确的最佳停止次数,且不需要预知图像中的噪声水平.数值实验结果表明,该准则所得到的最佳停止次数非常接近于均方差(mean square error,MSE)方法所得到的最佳停止次数,且适用于多种噪声水平.

关键词: 偏微分方程;图像平滑;相关系数;核密度估计;最优停止

Abstract:

Optimal stopping has been an important issue in image smoothing based on partial differential equations. According to the independence of random variables and the kernel density estimation, a novel optimal stopping criterion is proposed, which can be used without knowing the noise variance. Numerical experiments show consistency between the results obtained with the proposed method and that of the mean square error (MSE) method. The criterion is applicable at various noise levels.

Key words: partial differential equation; image smoothing; correlation coefficient; kernel density estimation; optimal stopping

中图分类号: