上海大学学报(自然科学版) ›› 2010, Vol. 16 ›› Issue (4): 336-341.

• 通信与信息工程 • 上一篇    下一篇

基于Curvelet域自适应数学形态学降噪的含噪图像盲分离方法

王军华,方勇   

  1. (上海大学 通信与信息工程学院,上海 200072)
  • 收稿日期:2009-03-11 出版日期:2010-08-30 发布日期:2010-08-30
  • 通讯作者: 方勇(1964~),男,教授,博士生导师,研究方向为盲信号处理、通信信号处理与智能信息系统. E-mail:yfang@staff.shu.edu.cn
  • 基金资助:

    高等学校博士点基金资助项目(20060280003);上海市重点学科建设资助项目(S30108);上海市科委重点实验室资助项目(08DZ2231100)

Blind Separation of Noisy Image Based on Adaptive Morphological De-noising in Curvelet Transform Domain

WANG Jun-hua,FANG Yong   

  1. (School of Communication and Information Engineering, Shanghai University, Shanghai 200072, China)
  • Received:2009-03-11 Online:2010-08-30 Published:2010-08-30

摘要:

针对含有噪声情况下的盲分离问题,提出一种基于Curvelet域自适应数学形态学降噪的含噪图像盲分离方法.该方法在对含噪混合图像进行Curvelet多尺度几何分析的基础上,根据Curvelet变换域信号稀疏的特点,采用位置相关自适应数学形态学降噪算子进行降噪,选取最稀疏的子带图像寻求分离矩阵,进而实现全局分离.仿真结果显示,该方法对于含噪图像的盲分离具有良好的性能.

关键词: 盲源分离;稀疏表示;Curvelet变换;数学形态学;自适应

Abstract:

According to traditional blind source separation algorithm without taking into account noise, a new algorithm for blind separation of noisy image is proposed based on adaptive morphology in the curvelet transform domain. Curvelet transform has good performance in sparseness. Noisy image can be analyzed with curvelet transform, and denoised with adaptive denoising algorithm based on mathematical morphology. The separation matrix can be estimated by selecting the sparsest subband image. The mixed image can be separated thoroughly. Simulation results show that the proposed algorithm can achieve a better performance for blind source separation of noisy images.

Key words: blind source separation; sparse representation; curvelet transform; mathematical morphology; adaptive

中图分类号: