上海大学学报(自然科学版) ›› 2009, Vol. 15 ›› Issue (6): 594-599.

• 数理化科学 • 上一篇    下一篇

流通量间断双曲守恒问题的推广WENO有限体格式

张鹏,乔殿梁,李书峰   

  1. (上海大学 上海市应用数学和力学研究所,上海 200072)
  • 收稿日期:2009-06-30 出版日期:2009-12-28 发布日期:2009-12-28
  • 通讯作者: 张鹏(1963~),男,教授,研究方向为计算流体力学. Email:pzhang@mail.shu.edu.cn
  • 作者简介:张鹏(1963~),男,教授,研究方向为计算流体力学. Email:pzhang@mail.shu.edu.cn
  • 基金资助:

    国家自然科学基金资助项目(70629001,10771134);国家重点基础研究发展计划(973计划)资助项目(2006CB705500)

Extended Finite Volume WENO Scheme for Solving Hyperbolic -Conservation Laws with Discontinuous Fluxes

ZHANG Peng,QIAO Dian-liang,LI Shu-feng   

  1. (Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China)
  • Received:2009-06-30 Online:2009-12-28 Published:2009-12-28

摘要:

 针对流通量间断双曲守恒方程的数值求解,构造了将δ-映射与经典的WENO(weighted essentially non-oscillatory)五阶有限体方法结合的混合算法, 并用于求解具有混合介质的弹性波方程和流通量间断的多车种交通流模型方程.数值结果表明了算法的有效性. 

关键词: 间断流通量;WENO重构;弹性波;交通波

Abstract:

 This paper combines δ-mapping algorithm with the classical fifthorder finite volume weighted essentially non-oscillatory (WENO) scheme for numerical solution of hyperbolic conservation laws with discontinuous fluxes. Numerical examples show that the hybrid scheme is efficient when applied to nonlinear elasticity in heterogeneous media and a multi-class Lighthill-Whitham-Richards (LWR) traffic model. 

Key words: discontinuous fluxes; WENO reconstruction; elastic waves; traffic flow waves

中图分类号: