上海大学学报(自然科学版)

• 通信与信息工程 • 上一篇    下一篇

光纤熔融拉锥的形状函数

陈振宜   

  1. 上海大学 通信与信息工程学院,上海市特种光纤重点实验室,上海 201800
  • 收稿日期:2007-01-31 修回日期:1900-01-01 出版日期:2007-08-20 发布日期:2007-08-20
  • 通讯作者: 陈振宜

Tapering Shape Function for a Fused Fiber

CHEN Zhen-yi   

  1. Shanghai Key Lab of Specialty Fiber Optics, School of Communication and Information Engineering, Shanghai University, Shanghai 201800, China

  • Received:2007-01-31 Revised:1900-01-01 Online:2007-08-20 Published:2007-08-20
  • Contact: CHEN Zhen-yi

摘要: 根据体积守恒条件导出光纤熔融拉锥形状函数的微分方程,并由边界条件和有效熔融区长度参量获得方程显解.该解析解能方便、精确和完整地描述不同熔融拉伸过程中光纤锥形的动态变化,以图表形式提供的大量实验数据表明,实验结果与理论计算相当吻合.最后,在已知初始熔融区长度的情况下,该解可以预知在任意拉伸长度下熔融拉锥光纤锥区的直径分布.

关键词: 光纤, 熔融拉锥, 微分方程, 无源器件, 锥形函数

Abstract: According to the principle of volumeconservation, a differential equation of tapering shape function has been derived for a fused fiber. A closedform solution is obtained under the boundary conditions and from the effective length of the fused zone for the fused tapering process. For different tapering processes with various torches, the tapering shape function can be described by the solution completely, accurately and conveniently. Experimental data in the form of relevant charts show good agreement with the theoretical results. Especially, given the initial length of the fused zone, the solution can predict the diameter distribution of the taper zone for the fused tapering fiber with arbitrary elongating length.

Key words: differential equation, fused tapering, passive devices, tapering-shape function
,
optical fiber

中图分类号: