[1] Lamesch J. World history of galvanizing [J]. Metallurgical Research & Technology, 2004, 102(2): 119-126. [2] Goodwin F. Trends and challenges for sheet galvanizing technology [C]// The Asia-Paciflc Galvanizing Conference. 2009: 1-7. [3] Adachi Y, Arai M. Transformation of Fe-Al phase to Fe-Zn phase on pure iron during galvanizing [J]. Materials Science and Engineering A, 1998, 254(1/2): 305-310. [4] Liu Y, Bian X, Zhang K, et al. Interfacial microstructures and properties of aluminum alloys/galvanized low-carbon steel under high pressure torsion [J]. Materials & Design, 2014, 64: 287-293. [5] Schuerz S, Fleischanderl M, Luckeneder G H, et al. Corrosion behavior of Zn-Al-Mg coated steel sheet in sodium chloride-containing environment [J]. Corrosion Science, 2009, 51: 2355-2363. [6] Li F, Lu J S, Yang H G , et al. The efiect of composition and microstructure on corrosion behavior in SST of Zn-Al-Mg galvanized steel sheet [J]. Applied Mechanics and Materials, 2014, 442: 64-69. [7] Wang S X, Ma X H, Bai J T, et al. Study of the corrosion behavior and mechanism of a hotdipping Zn-6Al-3Mg alloy coating in 3.5 wt% neutral NaCl solution [J]. Surface and Coatings Technology, 2023, 464: 129576. [8] Li S W, Gao B, Yin S H, et al. The efiects of Re and Si on the microstructure and corrosion resistance of Zn-6Al-3Mg hot dip coating [J]. Applied Surface Science, 2015, 357: 2004-2012. [9] Lee J W, Son I J, Kim S J. Newly designed surface control using Si addition in trace quantity for Zn-2Al-3Mg alloy coated steel sheet with improved corrosion resistance [J]. Applied Surface Science, 2022, 598: 153868. [10] Lee J M, Jung H Y, Yang W S, et al. Efiects of TiB and Si addition to bath on microstructure and E-coat corrosion behavior of Zn-Al-Mg alloy coating [C]// GALVATECH. 2023: 1247-1255. [11] Sullivan J, Mehraban S, Elvins J. In situ monitoring of the microstructural corrosion mechanisms of zinc-magnesium-aluminium alloys using time lapse microscopy [J]. Corrosion Science, 2011, 53(6): 2208-2215. [12] Yao C, Lu H, Zhu T , et al. Efiect of Mg content on microstructure and corrosion behavior of hot dipped Zn-Al-Mg coatings [J]. Journal of Alloys and Compounds, 2016, 670: 239-248. [13] Tokuda S, Muto I, Sugawara Y, et al. Microelectrochemical investigation on the role of Mg in sacriflcial corrosion protection of 55 mass% Al-Zn-Mg coated steel [J]. Corrosion Science, 2017, 129: 126-135. [14] Lebozec N, Thierry D, Persson D, et al. Influence of microstructure of zinc-aluminiummagnesium alloy coated steel on the corrosion behavior in outdoor marine atmosphere [J]. Surface and Coatings Technology, 2019, 374: 897-909. [15] Wint N, Cooze N, Searle J R, et al. The efiect of microstructural reflnement on the localized corrosion of model Zn-Al-Mg alloy coatings on steel [J]. Journal of the Electrochemical Society, 2019, 166(11): C3147-C3158. [16] Zhou S J, Li Z W, Zhu Z, et al. Influence of Zr addition on the morphology of primary MgZn2 in the solidiflcation microstructure of Zn-6Al-3Mg alloy [J]. Materials Today Communications, 2024, 38: 107750. [17] Gogola P, Gabalcova Z, Kus Áy M Á, et al. The efiect of Sn addition on Zn-Al-Mg alloy. Part I: microstructure and phase composition [J]. Materials, 2021, 14: 5404. [18] Gogola P, Gabalcova Z, Kus Áy M Á, et al. The efiect of Sn addition on Zn-Al-Mg alloy. Part II: corrosion behavior [J]. Materials, 2021, 14: 5290. [19] Xu C L, Teng H X, Jiang G R, et al. The solidiflcation and corrosion behavior determination of the Ti/B added Zn-Al-Mg alloys [J]. Journal of Wuhan University of Technology: Materials Science Edition, 2022, 37: 707-715. |