[1] Zhao Q, Wu X, Li S, et al. Boosting thermal and mechanical properties: achieving highsafety separator chemically bonded with nano TiN particles for high performance lithium-ion batteries [J]. Small, 2023, 19(30): 2300378. [2] Sun Y, Jin Y, Jiang Z, et al. A review of mitigation strategies for Li-ion battery thermal runaway [J]. Engineering Failure Analysis, 2023, 149: 107259. [3] Xin X, Cui C, Shi K, et al. Efiect of halogen-nitrate heterogeneous additives in carbonate-ether mixed electrolytes on inhibiting the growth of Li dendrites [J]. Journal of Alloys and Compounds, 2022, 924: 166434. [4] Zhang R, Shen X, Zhang Y T, et al. Dead lithium formation in lithium metal batteries: a phase fleld model [J]. Journal of Energy Chemistry, 2022, 71: 29-35. [5] Shang F, Li Z, Quan H, et al. The multifunctional 2-trifluoroacetyl furan electrolyte additive for suppressing lithium dendrite growth [J]. Fuel, 2024, 357: 129931. [6] Li X, Guo S, Deng H, et al. An ultrafast rechargeable lithium metal battery [J]. Journal of Materials Chemistry A, 2018, 6(32): 15517-15522. [7] Kang R, Du Y, Zhou W, et al. Highly stable lithium metal anode enabled by constructing lithiophilic 3D interphase on robust framework [J]. Chemical Engineering Journal, 2023, 454: 140468. [8] Hao Z, Zhao Q, Tang J, et al. Functional separators towards the suppression of lithium dendrites for rechargeable high-energy batteries [J]. Materials Horizons, 2021, 8(1): 12-32. [9] Babiker D M D, Usha Z R, Wan C, et al. Recent progress of composite polyethylene separators for lithium/sodium batteries [J]. Journal of Power Sources, 2023, 564: 232853. [10] Li Y, Yu L, Hu W, et al. Thermotolerant separators for safe lithium-ion batteries under extreme conditions [J]. Journal of Materials Chemistry A, 2020, 8(39): 20294-20317. [11] Liang J, Chen Q, Liao X, et al. A nano-shield design for separators to resist dendrite formation in lithium-metal batteries [J]. Angewandte Chemie International Edition, 2020, 59(16): 6561- 6566. [12] Yu Y, Jia G, Zhao L, et al. Flexible and heat-resistant polyphenylene sulflde ultraflne flber hybrid separators for high-safety lithium-ion batteries [J]. Chemical Engineering Journal, 2023, 452: 139112. [13] Song Y, Wu K, Zhang T, et al. A nacre-inspired separator coating for impact-tolerant lithium batteries [J]. Advanced Materials, 2019, 31(51): 1905711. [14] Shin H J, Abbas S, Kim J, et al. Near-perfect suppression of Li dendrite growth by novel porous hollow carbon flbers embedded with ZnO nanoparticles as stable and e-cient anode for Li metal batteries [J]. Chemical Engineering Journal, 2023, 464: 142713. [15] Kim Y B, Seo H Y, Senthamaraikannan T G, et al. One-step synthesis of zinc oxide-carbon microspheres decorated with multi-voids and carbon nanotubes via spray pyrolysis for enhanced stability in lithium metal anodes [J]. Journal of Materials Science & Technology, 2024, 192: 95-107. [16] Pan R, Xu X, Sun R, et al. Nanocellulose modifled polyethylene separators for lithium metal batteries [J]. Small, 2018, 14(21): 1704371. [17] Tang L, Zhang R, Zhang X, et al. ZnO nanoconflned 3D porous carbon composite microspheres to stabilize lithium nucleation/growth for high-performance lithium metal anodes [J]. Journal of Materials Chemistry A, 2019, 7(33): 19442-19452. [18] Zhu H, Dong B, Cai X, et al. In situ covalent crosslinking strategy to construct highly stable composite separators for lithium-ion batteries [J]. Chemical Engineering Journal, 2024, 488: 151120. [19] Shen H, Wang K, Di Z, et al. E-cient decomposition of ozone at room temperature by cobaltorganic ZIF-67 nanostructure and its derivatives [J]. ACS Applied Nano Materials, 2024, 7(1): 606-617. [20] Ding J, Zhao H, Yu H. Bio-inspired multifunctional graphene-epoxy anticorrosion coatings by low-defect engineered graphene [J]. ACS Nano, 2022, 16(1): 710-720. [21] Zhang R, Li Y, Qiao L, et al. Atomic layer deposition assisted superassembly of ultrathin ZnO layer decorated hierarchical Cu foam for stable lithium metal anode [J]. Energy Storage Materials, 2021, 37: 123-134. [22] Singh K, Nancy, Kaur H, et al. ZnO and cobalt decorated ZnO NPs: synthesis, photocatalysis and antimicrobial applications [J]. Chemosphere, 2023, 313: 137322. [23] Mohammadi A, Hagopian A, Sayegh S, et al. Towards understanding the nucleation and growth mechanism of Li dendrites on zinc oxide-coated nickel electrodes [J]. Journal of Materials Chemistry A, 2022, 10(34): 17593-17602. [24] Wang S, Ma Z, Zhao W, et al. Deterioration mechanism of the wettability of a lithium-ion battery separator induced by low-temperature discharge [J]. Applied Energy, 2024, 364: 123136. [25] Xing J, Li J, Fan W, et al. A review on nanoflbrous separators towards enhanced mechanical properties for lithium-ion batteries [J]. Composites Part B: Engineering, 2022, 243: 110105. [26] Bahi A, Shao J, Mohseni M, et al. Membranes based on electrospun lignin-zeolite composite nanoflbers [J]. Separation and Puriflcation Technology, 2017, 187: 207-213. [27] Zhu Y, Xie J, Pei A, et al. Fast lithium growth and short circuit induced by localizedtemperature hotspots in lithium batteries [J]. Nature Communications, 2019, 10(1): 2067. [28] Wang K, Duan J, Chen X, et al. Nanoflbrous covalent organic frameworks based hierarchical porous separators for fast-charging and thermally stable lithium metal batteries [J]. Advanced Energy Materials, 2024, 14(25): 2401146. [29] Song C, Chen Z, Huang X, et al. Synergy of molybdenum carbide nanosheets with PMIA separator for regulated Li+ transport in high-performance lithium-ion batteries [J]. Chemical Engineering Journal, 2024, 502: 158075. [30] Diederichsen K M, McShane E J, McCloskey B D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries [J]. ACS Energy Letters, 2017, 2(11): 2563- 2575. [31] Fang Y, Zhang Z, Luo X. A cellulose membrane-based separator structured with ZIF-67 via electrostatic interaction used for low-impedance lithium metal batteries [J]. Journal of Energy Storage, 2024, 98: 113135. [32] Hao Z, Wang C, Wu Y, et al. Electronegative nanochannels accelerating lithium-ion transport for enabling highly stable and high-rate lithium metal anodes [J]. Advanced Energy Materials, 2023, 13(28): 2204007. [33] Lin D, Liu Y, Liang Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes [J]. Nature Nanotechnology, 2016, 11(7): 626-632. [34] Chen M, Fan Y, Zhou H, et al. ZnO@C coated cellulose-based separators control lithium deposition direction to stable lithium metal batteries [J]. Small, 2024, 20(11): 2306712. [35] Lee D, Jung A, Son J G, et al. Phase-inversion induced co-assembly of poly(ether imide)/aramid nanoflbrillar composite separators for high-speed lithium-metal batteries [J]. Energy Storage Materials, 2023, 61: 102902. [36] Yao Z, Jia W, Wang Z, et al. Fast ion/electron conducting scafiold of Li-Zn dual-phase alloy enable uniform deposition of Li metal at high current densities [J]. Journal of Energy Chemistry, 2020, 51: 285-292. [37] Hu Y, Li Z, Wang Z, et al. Suppressing local dendrite hotspots via current density redistribution using a superlithiophilic membrane for stable lithium metal anode [J]. Advanced Science, 2023, 10(12): 2206995. [38] Zhou X, Wang S, Li Y, et al. Boosting Li-metal anode performance with lithiophilic Li-Zn seeds in a 2D reduced graphene oxide scafiold [J]. Advanced Energy Materials, 2025, 15(3): 2403640. [39] Lin Y, Wen Z, Yang C, et al. Strengthening dendrite suppression in lithium metal anode by in-situ construction of Li-Zn alloy layer [J]. Electrochemistry Communications, 2019, 108: 106565. |