[1] Reyren N, Thiel S, Caviglia A D, et al. Superconducting interfaces between insulating oxides [J]. Science, 2007, 317(5842): 1196-1199. [2] Gozar A, Logvenov G, Kourkoutis L F, et al. High-temperature interface superconductivity between metallic and insulating copper oxides [J]. Nature, 2008, 455(7214): 782-785. [3] Li D, Lee K, Wang B Y, et al. Superconductivity in an inflnite-layer nickelate [J]. Nature, 2019, 572(7771): 624-627. [4] Ugeda M M, Bradley A J, Zhang Y, et al. Characterization of collective ground states in single-layer NbSe2 [J]. Nature Physics, 2015, 12(1): 92-97. [5] Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 43-50. [6] Chen G, Sharpe A L, Gallagher P, et al. Signatures of tunable superconductivity in a trilayer graphene moire superlattice [J]. Nature, 2019, 572(7768): 215-219. [7] Liu Y, Ma C, Zhang Q, et al. 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids [J]. Advanced Materials, 2019, 31(21): 1900062. [8] Chen Y Z, Bovet N, Trier F, et al. A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3 [J]. Nature Communications, 2013, 4(1): 1371. [9] He T, Liu W, Lv T, et al. MXene/SnO2 heterojunction based chemical gas sensors [J]. Sensors and Actuators B: Chemical, 2021, 329: 129275. [10] Bert J A, Kalisky B, Bell C, et al. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface [J]. Nature Physics, 2011, 7(10): 767-771. [11] Caviglia A D, Gariglio S, Reyren N, et al. Electric fleld control of the LaAlO3/SrTiO3 interface ground state [J]. Nature, 2008, 456(7222): 624-627. [12] Tang C S, Zeng S, Diao C, et al. Two-dimensional charge localization at the perovskite oxide interface [J]. Applied Physics Reviews, 2022, 9(3): 031405. [13] Edge J M, Kedem Y, Aschauer U, et al. Quantum critical origin of the superconducting dome in SrTiO3 [J]. Physical Review Letters, 2015, 115(24): 247002. [14] Richter C, Boschker H, Dietsche W, et al. Interface superconductor with gap behaviour like a high-temperature superconductor [J]. Nature, 2013, 502(7472): 528-531. [15] Liu C, Yan X, Jin D, et al. Two-dimensional superconductivity and anisotropic transport at KTaO3(111) interfaces [J]. Science, 2021, 371(6530): 716-721. [16] Thompson J R, Boatner L A, Thomson J O. Very low-temperature search for superconductivity in semiconducting KTaO3 [J]. Journal of Low Temperature Physics, 1982, 47(5): 467-475. [17] Chen Z, Liu Y, Zhang H, et al. Electric fleld control of superconductivity at the LaAlO3/KTaO3(111) interface [J]. Science, 2021, 372(6543): 721-724. [18] Cooper V R. Enhanced carrier mobilities in two-dimensional electron gases at III-III/I-V oxide heterostructure interfaces [J]. Physical Review B, 2012, 85(23): 235109. [19] Himmetoglu B, Janotti A. Transport properties of KTaO3 from flrst-principles [J]. Journal of Physics: Condensed Matter, 2016, 28(6): 065502. [20] Zhang H, Yun Y, Zhang X, et al. High-mobility spin-polarized two-dimensional electron gases at EuO/KTaO3 interfaces [J]. Physical Review Letters, 2018, 121(11): 116803. [21] Goyal S, Wadehra N, Chakraverty S. Tuning the electrical state of 2DEG at LaVO3iKTaO3 interface: efiect of light and electrostatic gate [J]. Advanced Materials Interfaces, 2020, 7(16): 2000646. [22] Jellison G E, Paulauskas I, Boatner L A, et al. Optical functions of KTaO3 as determined by spectroscopic ellipsometry and comparison with band structure calculations [J]. Physical Review B, 2006, 74(15): 155130. [23] Fujiwara T, Sasahara A, Happo N, et al. Single-crystal model of highly e-cient watersplitting photocatalysts: a KTaO3 wafer doped with calcium cations [J]. Chemistry of Materials, 2020, 32(4): 1439-1447. [24] Wadehra N, Tomar R, Halder S, et al. Electronic structure modiflcation of the KTaO3 single-crystal surface by Ar+ bombardment [J]. Physical Review B, 2017, 96(11): 115423. [25] King P D, He R H, Eknapakul T, et al. Subband structure of a two-dimensional electron gas formed at the polar surface of the strong spin-orbit perovskite KTaO3 [J]. Physical Review Letters, 2012, 108(11): 117602. [26] Tyunina M, Narkilahti J, Plekh M, et al. Evidence for strain-induced ferroelectric order in epitaxial thin-fllm KTaO3 [J]. Physical Review Letters, 2010, 104(22): 227601. [27] Bae I T, Ichinose T, Han M G, et al. Tensile stress efiect on epitaxial BiFeO3 thin fllm grown on KTaO3 [J]. Scientiflc Reports, 2018, 8(1): 893. [28] Golovina I S, Kolesnik S P, Bryksa V P, et al. Defect driven ferroelectricity and magnetism in nanocrystalline KTaO3 [J]. Physica B: Condensed Matter, 2012, 407(4): 614-623. [29] Sakai A, Kanno T, Yotsuhashi S, et al. Thermoelectric properties of electron-doped KTaO3 [J]. Japanese Journal of Applied Physics, 2009, 48(9): 097002. [30] Yamaichi E, Watanabe K, Imamiya K, et al. Photoluminescence in KTaO3 single crystal [J]. Journal of the Physical Society of Japan, 1987, 56(5): 1890-1897. [31] Zhou Z, Huang G, Shen J, et al. WSe2/2D electron gas heterojunction on KTaO3 for roomtemperature giant photoconductivity [J]. Ceramics International, 2021, 47(6): 7425-7429. [32] Dumen M, Singh A, Goyal S, et al. Photoconductivity of the EuO KTO interface: efiect of intrinsic carrier density and temperature [J]. The Journal of Physical Chemistry C, 2021, 125(28): 15510-15515. [33] Chen Z, Liu Z, Sun Y, et al. Two-dimensional superconductivity at the LaAlO3/KTaO3(110) heterointerface [J]. Physical Review Letters, 2021, 126(2): 026802. [34] Nakamura H, Kimura T. Electric fleld tuning of spin-orbit coupling in KTaO3 fleld-efiect transistors [J]. Physical Review B, 2009, 80(12): 121308. [35] Gariglio S, Caviglia A D, Triscone J M, et al. A spin-orbit playground: surfaces and interfaces of transition metal oxides [J]. Reports on Progress in Physics, 2019, 82(1): 012501. [36] Hua X, Meng F, Huang Z, et al. Tunable two-dimensional superconductivity and spin-orbit coupling at the EuO/KTaO3(110) interface [J]. NPJ Quantum Materials, 2022, 7(1): 97. [37] Hua X, Zeng Z, Meng F, et al. Superconducting stripes induced by ferromagnetic proximity in an oxide heterostructure [J]. Nature Physics, 2024, 20(6): 957-963. [38] Qiao W, Ma Y, Yan J, et al. Gate tunability of the superconducting state at the EuO/KTaO3(111) interface [J]. Physical Review B, 2021, 104(18): 184505. [39] Liu C, Zhou X, Hong D, et al. Tunable superconductivity and its origin at KTaO3 interfaces [J]. Nature Communications, 2023, 14: 951. [40] Sun Y, Liu Y, Hong S, et al. Critical thickness in superconducting LaAlO3/KTaO3(111) heterostructures [J]. Physical Review Letters, 2021, 127(8): 086804. [41] Chen X, Yu T, Liu Y, et al. Orientation-dependent electron-phonon coupling in interfacial superconductors LaAlO3/KTaO3 [DB/OL]. (2023-01-31) [2024-02-20]. http://arxiv.org/abs/2301.13488. [42] Mallik S, Menard G C, Saiz G, et al. Superfluid stifiness of a KTaO3-based two-dimensional electron gas [J]. Nature Communications, 2022, 13: 4625. [43] Al-Tawhid A H, Kanter J, Hatefipour M, et al. Superconductivity and weak antilocalization at KTaO3(111) interfaces [J]. Journal of Electronic Materials, 2022, 51(11): 6305- 6309. [44] Liu Y, Liu Z, Zhang M, et al. Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures [J]. Chinese Physics B, 2023, 32(3): 037305 [45] Maryenko D, Maznichenko I V, Ostanin S, et al. Superconductivity at epitaxial LaTiO3- KTaO3 interfaces [J]. APL Materials, 2023, 11(6): 061102. [46] Kim J, Yu M, Lee J-W, et al. Electronic-grade epitaxial (111) KTaO3 heterostructures [J]. Science Advances, 2024, 10(21): eadk4288. [47] Arnault EG, Al-Tawhid A H, Salmani-Rezaie S, et al. Anisotropic superconductivity at KTaO3(111) interfaces [J]. Science Advances, 2023, 9(7): eadf1414. [48] Gan Y, Yang F, Kong L, et al. Light-induced giant rashba spin-orbit coupling at superconducting KTaO3(110) heterointerfaces [J]. Advanced Materials, 2023, 35(25): 2370180. [49] Al-Tawhid A H, Poage S J, Salmani-Rezaie S, et al. Enhanced critical fleld of superconductivity at an oxide interface [J]. Nano Letters, 2023, 23(15): 6944-6950. [50] Zhang G, Wang L, Wang J, et al. Spontaneous rotational symmetry breaking in KTaO3 heterointerface superconductors [J]. Nature Communications, 2023, 14: 3046. [51] Ueno K, Inoue I H, Yamada T, et al. Field-efiect transistor based on KTaO3 perovskite [J]. Applied Physics Letters, 2004, 84(19): 3726-3728. [52] Sekiya D, Nakamura H, Kimura T. Enhanced carrier injection in perovskite fleld-efiect transistors via low-barrier contacts [J]. Applied Physics Express, 2011, 4(6): 064103. [53] Zhang C, Zhang X, Xu R, et al. Ion-liquid-gated KTaO3-based electric double layer transistor [J]. IEEE Electron Device Letters, 2023, 44(12): 1987-1990. [54] Tian X, Li B, Sun H, et al. Visible-light-driven semiconductor-metal transition in electron gas at the (100) surface of KTaO3 [J]. Nanomaterials, 2023, 13(23): 3055. [55] Goyal S, Tomar R, Chakraverty S. Photodynamics study of KTaO3-based conducting interfaces [J]. ACS Applied Electronic Materials, 2021, 3(2): 905-911. [56] Zhai J, Trama M, Liu H, et al. Large nonlinear transverse conductivity and berry curvature in KTaO3 based two-dimensional electron gas [J]. Nano Letters, 2023, 23(24): 11892-11898. [57] Kumar N, Kakkar S, Bera C. High thermoelectric power factor in LaVO3/KTaO3 heterostructure [J]. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 146: 115525. [58] Ojha S K, Gogoi S K, Patidar M M, et al. Oxygen vacancy-induced topological Hall efiect in a nonmagnetic band insulator [J]. Advanced Quantum Technologies, 2020, 3(7): 2000021. [59] Wadehra N, Chakraverty S. Electrostatic memory in KTaO3 [J]. Applied Physics Letters, 2019, 114(16): 163103. [60] Zhang H, Zhu Z, Zhu Y C, et al. Fermi-level-dependent charge-to-spin conversion of the twodimensional electron gas at the γ-Al2O3/KTaO3 interface [J]. Physical Review Applied, 2023, 19(3): 034045. [61] Zheng S, Ma J, Fang K, et al. High-voltage potassium ion micro-supercapacitors with extraordinary volumetric energy density for wearable pressure sensor system [J]. Advanced Energy Materials, 2021, 11(17): 2003835. [62] Garcia-Barcelo J M, Melcon A A, Cuendis S A, et al. On the development of new tuning and inter-coupling techniques using ferroelectric materials in the detection of dark matter axions [J]. IEEE Access, 2023, 11: 30360-30372. [63] Kumar N, Wadehra N, Tomar R, et al. Observation of Shubnikov de Haas oscillations, planar Hall efiect, and anisotropic magnetoresistance at the conducting interface of EuO KTaO3 [J]. Advanced Quantum Technologies, 2020, 4(1): 2000081. [64] Zhang H, Ma Y, Zhang H, et al. Thermal spin injection and inverse edelstein efiect of the twodimensional electron gas at EuO-KTaO3 interfaces [J]. Nano Letters, 2019, 19(3): 1605-1612. [65] Ren T, Li M, Sun X, et al. Two-dimensional superconductivity at the surfaces of KTaO3 gated with ionic liquid [J]. Science Advances, 2022, 8(22): eabn4273. |