[1] Bachtold A, Hadley P, Nakanishi T, et al. Logic circuits with carbon nanotube transistors [J]. Science, 2001, 294(5545): 1317-1320. [2] Choi W B, Chung D S, Kang J H, et al. Fully sealed, high-brightness carbon-nanotube field-emission display [J]. Applied Physics Letters, 1999, 75(20): 3129-3131. [3] Martel R, Schmidt T, Shea H R, et al. Single- and multi-wall carbon nanotube field-effect transistors [J]. Applied Physics Letters, 1998, 73(17): 2447-2449. [4] Tans S, Verschueren A, Dekker C. Room-temperature transistor based on a single carbon nanotube [J]. Nature, 1998, 393: 49-52. [5] Takakura A, Beppu K, Nishihara T, et al. Strength of carbon nanotubes depends on their chemical structures [J]. Nature Communications, 2019, 10(1): 3040. [6] Yang F, Wang X, Zhang D, et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts [J]. Nature, 2014, 510(7506): 522-524. [7] Yang F, Wang M, Zhang D, et al. Chirality pure carbon nanotubes: growth, sorting, and characterization [J]. Chemical Reviews, 2020, 120(5): 2693-2758. [8] Javey A, Guo J, Wang Q, et al. Ballistic carbon nanotube field-effect transistors [J]. Nature, 2003, 424(6949): 654-657. [9] Jiang S, Hou P X, Chen M L, et al. Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes [J]. Science Advances, 2018, 4(5): eaap9264. [10] Avouris P, Chen Z, Perebeinos V. Carbon-based electronics [J]. Nature Nanotechnology, 2007, 2(10): 605-615. [11] Saito R, Fujita M, Dresselhaus G, et al. Electronic-structure of chiral graphene tubules [J]. Applied Physics Letters, 1992, 60: 2204-2206. [12] Tahvili M S, Jahanmiri S, Sheikhi M H. High-frequency transmission through metallic single-walled carbon nanotube interconnects [J]. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2009, 22(5): 369-378. [13] He M, Dong J, Zhang K, et al. Precise determination of the threshold diameter for a single-walled carbon nanotube to collapse [J]. ACS Nano, 2014, 8(9): 9657-9663. [14] Wang N, Tang Z K, Li G D, et al. Single-walled 4 A carbon nanotube arrays [J]. Nature, 2000, 408(6808): 50-51. [15] Liang Y X, Wang T H. A double-walled carbon nanotube field-effect transistor using the inner shell as its gate [J]. Physica E: Low-dimensional Systems and Nanostructures, 2004, 23(1): 232-236. [16] McLean B, Mitchell I, Ding F. Mechanism of alcohol chemical vapor deposition growth of carbon nanotubes: catalyst oxidation [J]. Carbon, 2022, 191: 1-9. [17] Charlier J C. Defects in carbon nanotubes [J]. Accounts of Chemical Research, 2002, 35(12): 1063-1069. [18] Sanchez-Valencia J R, Dienel T, Gröning O, et al. Controlled synthesis of single-chirality carbon nanotubes [J]. Nature, 2014, 512(7512): 61-64. [19] Liu H P, Nishide D, Tanaka T, et al. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography [J]. Nature Communications, 2011, 2(1): 309. [20] Zhang S, Kang L, Wang X, et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts [J]. Nature, 2017, 543(7644): 234-238. [21] Tu X, Manohar S, Jagota A, et al. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes [J]. Nature, 2009, 460(7252): 250-253. [22] Arnold M S, Green A A, Hulvat J F, et al. Sorting carbon nanotubes by electronic structure using density differentiation [J]. Nature Nanotechnology, 2006, 1(1): 60-65. [23] Ding L P, McLean B, Xu Z, et al. Why carbon nanotubes grow [J]. Journal of the American Chemical Society, 2022, 144(12): 5606-5613. [24] Qiu L, Ding F. Is the carbon nanotube-catalyst interface clean during growth? [J]. Small, 2022, 18(47): 2204437. [25] Yang F, Zhao H, Li R, et al. Growth modes of single-walled carbon nanotubes on catalysts [J]. Science Advances, 2022, 8(41): eabq0794. [26] Akbarzadeh Z, Maavara T, Slowinski S, et al. Effects of damming on river nitrogen fluxes: a global analysis [J]. Global Biogeochemical Cycles, 2019, 33(11): 1339-1357. [27] Li R, Antunes E F, Kalfon-Cohen E, et al. Low-temperature growth of carbon nanotubes catalyzed by sodium-based ingredients [J]. Angew Chem Int Ed Engl, 2019, 58(27): 9204-9209. [28] Liu J, Wang C, Tu X, et al. Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy [J]. Nature Communications, 2012, 3(1): 1199. [29] Pimonov V, Tran H N, Monniello L, et al. Dynamic instability of individual carbon nano -tube growth revealed by in situ homodyne polarization microscopy [J]. Nano Letters, 2021, 21(19): 8495-8502. [30] Yoshikawa R, Hisama K, Ukai H, et al. Molecular dynamics of chirality definable growth of single-walled carbon nanotubes [J]. ACS Nano, 2019, 13(6): 6506-6512. [31] Hourahine B, Aradi B, Blum V, et al. DFTB plus, a software package for efficient approximate density functional theory based atomistic simulations [J]. Journal of Chemical Physics, 2020, 152(12): 124101. [32] Kharlamova M V. Investigation of growth dynamics of carbon nanotubes [J]. Beilstein Journal of Nanotechnology, 2017, 8: 826-856. [33] Raty J Y, Gygi F, Galli G. Growth of carbon nanotubes on metal nanoparticles: a microscopic mechanism from ab initio molecular dynamics simulations [J]. Physical Review Letters, 2005, 95(9): 096103. [34] Ding F, Bolton K, RosÉn A. Nucleation and growth of single-walled carbon nanotubes: a molecular dynamics study [J]. The Journal of Physical Chemistry, 2004, 108: 17369-17377. [35] Penev E S, Artyukhov V I, Yakobson B I. Extensive energy landscape sampling of nanotube end-caps reveals no chiral-angle bias for their nucleation [J]. ACS Nano, 2014, 8(2): 1899-1906. [36] Qiu L, Ding F. Understanding single-walled carbon nanotube growth for chirality controllable synthesis [J]. Accounts of Materials Research, 2021, 2(9): 828-841. [37] Xu Z, Qiu L, Ding F. The kinetics of chirality assignment in catalytic single-walled carbon nanotube growth and the routes towards selective growth [J]. Chemical Science, 2018, 9(11): 3056-3061. [38] Shibuta Y, Maruyama S. Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method [J]. Chemical Physics Letters, 2003, 382(3): 381-386. [39] Shibuta Y, Maruyama S. Molecular dynamics simulation of generation process of SWNTs [J]. Physica B: Condensed Matter, 2002, 323: 187-189. [40] Ding F, Bolton K. The importance of supersaturated carbon concentration and its distribution in catalytic particles for single-walled carbon nanotube nucleation [J]. Nanotechnology, 2006, 17(2): 543-548. [41] Ding F, RosÉn A, Bolton K. The role of the catalytic particle temperature gradient for SWNT growth from small particles [J]. Chemical Physics Letters, 2004, 393(4/5/6): 309-313. [42] Ding F, Larsson P, Larsson J A, et al. The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbon nanotubes [J]. Nano Letters, 2008, 8(2): 463-468. [43] Wang X, Ding F. How a solid catalyst determines the chirality of the single-wall carbon nanotube grown on it [J]. Journal of Physical Chemistry Letters, 2019, 10(4): 735-741. [44] Ding F, RosÉn A, Bolton K. Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth [J]. Journal of Chemical Physics, 2004, 121(6): 2775-2779. [45] Charlier J C, Amara H, Lambin P. Catalytically assisted tip growth mechanism for single-wall carbon nanotubes [J]. ACS Nano, 2007, 1(3): 202-207. [46] NosÉ S. A unified formulation of the constant temperature molecular dynamics methods [J]. The Journal of Chemical Physics, 1984, 81(1): 511-519. [47] He M, Amara H, Jiang H, et al. Key roles of carbon solubility in single-walled carbon nanotube nucleation and growth [J]. Nanoscale, 2015, 7(47): 20284-20289. [48] Amara H, Bichara C. Modeling the growth of single-wall carbon nanotubes [J]. Topics in Current Chemistry, 2017, 375(3): 55. [49] Luo M, Penev E S, Harutyunyan A R, et al. Effect of cap-catalyst structural correlation on the nucleation of carbon nanotubes [J]. The Journal of Physical Chemistry C, 2017, 121(34): 18789-18794. [50刘馥. 全碳反应力场的开发与碳纳米线形成机理的研究[D]. 上海: 上海大学, 2023. [51] Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1-19. [52] Thompson A P, Aktulga H M, Berger R, et al. LAMMPS: a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales [J]. Computer Physics Communications, 2022, 271: 108171. [53] Aktulga H M, Fogarty J C, Pandit S A, et al. Parallel reactive molecular dynamics: numerical methods and algorithmic techniques [J]. Parallel Computing, 2012, 38(4): 245-259. [54] Rappe A K, Goddard Ⅲ, W A. Charge equilibration for molecular dynamics simulations [J]. The Journal of Physical Chemistry, 1991, 95(8): 3358-3363. [55] Shi L, Rohringer P, Suenaga K, et al. Confined linear carbon chains as a route to bulk carbyne [J]. Nature Materials, 2016, 15(6): 634-639. [56] Liu F, Wang Q, Tang Y, et al. Carbon nanowires made by the insertion-and-fusion method toward carbon-hydrogen nanoelectronics [J]. Nanoscale, 2023, 15(13): 6143-6155. [57] Chang W W, Liu F, Liu Y F, et al. Smallest carbon nanowires made easy: long linear carbon chains confined inside single-walled carbon nanotubes [J]. Carbon, 2021, 183: 571-577. [58] Chen R, Liu F, Tang Y, et al. Combined first-principles and machine learning study of the initial growth of carbon nanomaterials on metal surfaces [J]. Applied Surface Science, 2022, 586: 152762. |