[1] |
Mirzaei H, Darroudi M. Zinc oxide nanoparticles: biological synjournal and biomedical applications[J]. Ceramics International, 2017, 43(1):907-914.
doi: 10.1016/j.ceramint.2016.10.051
|
[2] |
Smijs T G, Pavel S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness[J]. Nanotechnology Science and Applications, 2011(4):95-112.
|
[3] |
Perez E, Paula J, Ferreira S, et al. ZnO nanoparticles: synjournal, antimicrobial activity and food packaging applications[J]. Food and Bioprocess Technology, 2012, 5(5):1447-1464.
doi: 10.1007/s11947-012-0797-6
|
[4] |
Bolognesi C, Castle L, Cravedi J P, et al. Safety assessment of the substance zinc oxide, nanoparticles, for use in food contact materials[J]. EFSA Journal, 2016, 14(3):20164408.
|
[5] |
Wang Y L, Yuan L L, Yao C J, et al. Caseinophosphopeptides cytoprotect human gastric epithelium cells against the injury induced by zinc oxide nanoparticles[J]. RSC Advance, 2014, 4(79):42168-42174.
doi: 10.1039/C4RA05112B
|
[6] |
Liang T S, Guan R F, Tao M, et al. In vitro toxicity of zinc oxide nanoparticles from food additives in human gastric epithelium (GES-1) cells[J]. Science of Advanced Materials, 2017, 9(8):1393-1400.
doi: 10.1166/sam.2017.3106
|
[7] |
Wang Y L, Yuan L L, Yao C J, et al. A combined toxicity study of zinc oxide nanoparticles and vitamin C in food additives[J]. Nanoscale, 2014, 6(24):15333-15342.
doi: 10.1039/C4NR05480F
|
[8] |
Go M R, Yu J, Bae S H, et al. Effects of interactions between ZnO nanoparticles and saccharides on biological responses[J]. International Journal of Molecular Sciences, 2018, 19(2):020486.
|
[9] |
Mahler G J, Esch M B, Tako E, et al. Oral exposure to polystyrene nanoparticles affects iron absorption[J]. Nature Nanotechnology, 2012, 7(4):264-271.
doi: 10.1038/nnano.2012.3
|
[10] |
Ryazanova L V, Rondon L J, Zierler S, et al. TRPM7 is essential for Mg$^{2+}$ homeostasis in mammals[J]. Nature Communications, 2010, 1:109.
pmid: 21045827
|
[11] |
Guo Z Y, Martucci N J, Moreno-Olivas F, et al. Titanium dioxide nanoparticle ingestion alters nutrient absorption in an in vitro model of the small intestine[J]. NanoImpact, 2017(5):70-82.
|
[12] |
Ognik K, Stepniowska A, Cholewinska E, et al. The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium[J]. Poultry Science, 2016, 95(9):2045-2051.
doi: 10.3382/ps/pew200
|
[13] |
王宁, 刘丹, 谢敏伟, 等. 水环境中纳米氧化锌的环境行为及生物毒性研究进展[J]. 环境化学, 2016, 35(12):2528-2534.
|
|
Wang N, Liu D, Xie M W, et al. Behavior and toxicity of zinc oxide nanoparticles in aquatic environment[J]. Environmental Chemistry, 2016, 35(12):2528-2534.
|
[14] |
Reshma V G, Mohanan P V. Cellular interactions of zinc oxide nanoparticles with human embryonic kidney (HEK 293) cells[J]. Colloids and Surfaces B (Biointerfaces), 2017, 157:182-190.
|
[15] |
Sembratowicz I, Ognik K, Stepniowska A. A evaluation of in vitro intestinal absorption of iron, calcium and potassium in chickens receiving gold nanoparticles[J]. British Poultry Science, 2016, 57(4):559-565.
doi: 10.1080/00071668.2016.1187713
pmid: 27160776
|
[16] |
Hara H, Onoshima S, Nakagawa C. Difructose an hydride Ⅲ promotes iron absorption in the rat large intestine[J]. Nutrition, 2010, 26(1):120-127.
doi: 10.1016/j.nut.2009.05.024
|
[17] |
Mortimer M, Kasemets K, Kahru A. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa tetrahymena thermophila[J]. Toxicology, 2010, 269:182-189.
doi: 10.1016/j.tox.2009.07.007
pmid: 19622384
|
[18] |
Espinoza A, Le B S, Olivares M, et al. Iron, copper, and zinc transport: inhibition of divalent metal transporter 1 (DMT1) and human copper transporter 1 (hCTR1) by shRNA[J]. Biological Trace Element Research, 2012, 146(2):281-286.
doi: 10.1007/s12011-011-9243-2
|
[19] |
Salovaara S, Sanderg A, Andlid T, et al. Organic acids influence iron uptake in the human epithelial cell line Caco-2[J]. Journal of Agricultural and Food Chemistry, 2002, 50(21):6233-6238.
pmid: 12358508
|