[1] Gere J M, Timoshenko S P. Mechanics of material [M] 4th Edition. Boston: PWS Press, 1997. [2] Selvadurai A P S. Elastic analysis of soil-foundation interaction [M]. New York: Elsevier Science, 1979: 1-11. [3] 丁敏, 李潇, 马倩, 等. 基于Winkler弹性地基梁模型的半刚性轻钢柱脚底板受力分析[J]. 工程力学, 2014, 31(5): 158-165. [4] 赵明华, 张玲, 马缤辉, 等. 考虑水平摩阻力的弹性地基梁非线性分析[J]. 岩土工程学报, 2009, 31(7): 985-990. [5] 赵明华, 张玲, 马缤辉, 等. 考虑水平摩阻力的Winkler地基有限长梁非线性受力分析[J]. 土木工程学报, 2009, 42(7): 106-112. [6] 周慧, 罗松南, 孙丹. 考虑水平摩阻力的弹性地基梁大变形弯曲分析[J]. 工程力学, 2011, 28(1): 43-54. [7] Diego F, Egidio R. Analytical solution for the elastic bending of beams lying on a linearly variable Winkler support [J]. International Journal of Mechanical Sciences, 2017, 128(8): 680- 694. [8] Musa A E S. Galerkin method for bending analysis of beams on non-homogeneous foundation [J]. Journal of Applied and Computational Mechanics, 2017, 16(3): 61-72. [9] Alijani A, Mastan A M, Darvizeh A, et al. Theoretical approaches for bending analysis of founded Euler-Bernoulli cracked beams [J]. Archive of Applied Mechanics, 2018, 88(6): 875-895. [10] Skrinar M, Imamović D. Exact closed-form finite element solution for the bending static analysis of transversely cracked slender elastic beams on Winkler foundation [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(12): 1389-1404. [11] 欧阳煜, 夏登科. Pasternak双参数地基上Euler-Bernoulli裂纹梁弯曲的解析解[J]. 力学季刊, 2021, 42(4): 685-695. [12] Zhao X Z. Analytical solution of deflection of multi-cracked beams on elastic foundations under arbitrary boundary conditions using a diffused stifiness reduction crack model [J]. Archive of Applied Mechanics, 2020, 91(1): 1-23. [13] Kimsher P G. The effect of discontinuities on the natural frequency of beams [J]. American Society of Testing and Materials, 1944, 44(1): 897-904. [14] Chondros T G, Dimarogonas A D, Yao J. A continuous cracked beam vibration [J]. Journal of Sound and Vibration, 1998, 215(1): 17-34. [15] Irwin G R. Analysis of stresses and strains near the end of a crack traversing plate [J]. Journal of Applied Mechanics, 1957, 24(3): 361-364. [16] Biondi B, Caddemi S. Closed form solutions of Euler-Bernoulli beams with singularities [J]. International Journal of Solids and Structures, 2005, 42(9): 3027-3044. [17] Palmeri A, Cicirello A. Physically-based Dirac’s delta functions in the static analysis of multi-cracked Euler-Bernoulli and Timoshenko beams [J]. International Journal of Solids and Structures, 2011, 48(14/15): 2184-2195. [18] Cicirello A, Palmeri A. Static analysis of Euler-Bernoulli beams with multiple unilateral cracks under combined axial and transverse loads [J]. International Journal of Solids and Structures, 2014, 51(5): 1020-1029. [19] Challamel N, Xiang Y. On the influence of the unilateral damage behaviour in the stability of cracked beam columns [J]. Engineering Fracture Mechanics, 2010, 77(9): 1467-1478. [20] Bakhtiari-Nejad F, Khorram A, Rezaeian M. Analytical estimation of natural frequencies and mode shapes of a beam having two cracks [J]. International Journal of Mechanical Sciences, 2014, 78(1): 193-202. [21] 付超, 杨骁. 基于等效黏性弹簧黏弹性Timoshenko裂纹梁弯曲解析解[J]. 力学季刊, 2018, 39(1): 90-106. [22] Ghannadiasl A, Ajirlou S K. Forced vibration of multi-span cracked Euler-Bernoulli beams using dynamic green function formulation [J]. Applied Acoustics, 2019, 148(2): 484-494 [23] Yang X, Huang J, Ouyang Y. Bending of Timoshenko beam with effect of crack gap based on equivalent spring model [J]. Applied Mathematics and Mechanics, 2016, 37(4): 513-528. [24] 孟哲, 杨骁. 考虑轴力二阶效应悬臂梁的支承及裂纹参数识别[J]. 力学季刊, 2019, 40(3): 515-528. [25] 杨骁, 应方乾, 孟哲. 悬臂梁中开闭裂纹的损伤识别[J]. 力学季刊, 2021, 42(1): 108-119. [26] Bilello C. Theoretical and experimental investigation on damaged beams under moving systems [D]. Italy: Università degli Studi di Palermo, 2001. [27] Bracewell R N. The Fourier transform and its applications [M]. New York: McGraw-Hill, 1986. |