Journal of Shanghai University(Natural Science Edition) ›› 2022, Vol. 28 ›› Issue (3): 399-412.doi: 10.12066/j.issn.1007-2861.2388
• Data Collection, Database and Data Processing • Previous Articles Next Articles
YUE Xichao1, FENG Yan1, LIU Jian1, YU Yeyong1, XI Kangjie2, QIAN Quan1,3,4()
Received:
2022-03-30
Online:
2022-06-30
Published:
2022-05-27
Contact:
QIAN Quan
E-mail:qqian@shu.edu.cn
CLC Number:
YUE Xichao, FENG Yan, LIU Jian, YU Yeyong, XI Kangjie, QIAN Quan. Database for materials genome engineering[J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(3): 399-412.
[1] |
Hey T, Tansley S, Tolle K. The fourth paradigm: data-intensive scientific discovery[J]. Proceedings of the IEEE, 2011, 99(8): 1334-1337.
doi: 10.1109/JPROC.2011.2155130 |
[2] |
Pratt M J. Introduction to ISO 10303: the step standard for product data exchange[J]. Journal of Computing and Information Science in Engineering, 2001, 1(1):102-103.
doi: 10.1115/1.1354995 |
[3] |
Hill J, Mulholland G, Persson K, et al. Materials science with large-scale data and informatics: unlocking new opportunities[J]. MRS Bulletin, 2016, 41(5): 399-409.
doi: 10.1557/mrs.2016.93 |
[4] |
Zhang X, Hu C, Li H. Semantic query on materials data based on mapping MatML to an OWL ontology[J]. Data Science Journal, 2009, 8: 1-17.
doi: 10.2481/dsj.8.1 |
[5] | Liu S L, Su Y J, Yin H Q, et al. An infrastructure with user-centered presentation data model for integrated management of materials data and services[J]. npj Computational Materials, 2021, 7(1): 779-786. |
[6] | Wilkinson M D, Dumontier M, Aalbersberg I J, et al. The FAIR guiding principles for scientific data management and stewardship[J]. Scientific Data, 2016, 3: 167-172. |
[7] |
Bray T, Paoli J, Sperberg-McQueen C M, et al. Extensible markup language (XML) 1.0[J]. World Wide Web Journal, 1997, 2(4): 29-66.
doi: 10.1023/A:1019288403823 |
[8] | Sperberg-McQueen C M, Thompson H S. W3C XML schema definition language (XSD) 1.1 part 1: structures[EB/OL]. (2012-04-15)[2022-03-20]. https://www.w3.org/TR/xmlschema11-1/. |
[9] | Saxonica M K. XSL transformations (XSLT) version 2.0 (second edition)[EB/OL]. (2007-01-23)[2022-03-30]. https://www.w3.org/TR/2021/REC-xslt20-20210330/. |
[10] |
Butler K T, Davies D W, Cartwright H, et al. Machine learning for molecular and materials science[J]. Nature, 2018, 559(7715): 547-555.
doi: 10.1038/s41586-018-0337-2 |
[11] | Bai J, Lu F, Zhang K, et al. ONNX: open neural network exchange, Github[EB/OL]. (2022-03-18) [2022-03-20] https://github.com/onnx/onnx. |
[12] |
Guazzelli A, Zeller M, Lin W C, et al. PMML: an open standard for sharing models[J]. The R Journal, 2009, 1(1): 60-65.
doi: 10.32614/RJ-2009-010 |
[13] | Kosba A, Miller A, Shi E, et al. Hawk: the blockchain model of cryptography and privacy-preserving smart contracts[C]// 2016 IEEE Symposium on Security and Privacy. 2016: 839-858. |
[14] | Yang Q, Liu Y, Chen T, et al. Federated machine learning: concept and applications[EB/OL]. (2019-02-13)[2022-03-20]. http://arxiv.org/abs/1902.04885. |
[15] | Dwork C, McSherry F, Nissim K, et al. Calibrating noise to sensitivity in private data analysis[C]// Proceeding of Theory of Cryptography Conference. 2006: 1-20. |
[16] | Rivest R L, Adleman L, Dertouzos M L, et al. On data banks and privacy homomorphisms[J]. Foundations of Secure Computation, 1978, 4(11): 169-180. |
[17] | Mohassel P, Zhang Y. SecureML: a system for scalable privacy-preserving machine learning[C]// 2017 IEEE Symposium on Security and Privacy. 2017: 19-38. |
[18] | Yamazaki M, Xu Y. Current status of NIMS structural materials database[C]// ASME Pressure Vessels & Piping Conference. 2009: 1561-1568. |
[19] | Bordes A, Usunier N, Garcia-Duran A, et al. Translating embeddings for modeling multi-relational data[C]// Advances in Neural Information Processing Systems. 2013: 2787-2795. |
[20] | Wang Z, Zhang J, Feng J, et al. Knowledge graph embedding by translating on hyperplanes[C]// Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. 2014: 1112-1119. |
[21] | Hu A, Chen H. Data visualization analysis of knowledge graph application[C]// 2021 2nd International Conference on Artificial Intelligence and Information Systems. 2021: 1-10. |
[22] | Gonçalves R S, Horridge M, Li R, et al. Use of OWL and semantic Web technologies at Pinterest[C]// The Semantic Web-ISWC 2019. 2019: 418-435. |
[23] |
Bienvenu M, Bourgaux C, Goasdoué F, et al. Computing and explaining query answers over inconsistent DL-Lite knowledge bases[J]. Journal of Artificial Intelligence Research, 2019, 64: 563-644.
doi: 10.1613/jair.1.11395 |
[24] |
Zhang X M, Liu X, Li X, et al. MMKG: an approach to generate metallic materials knowledge graph based on DBpedia and Wikipedia[J]. Computer Physics Communications, 2017, 211: 98-112.
doi: 10.1016/j.cpc.2016.07.005 |
[1] | WEI Xiao, WANG Xiaoxin, CHEN Yongqi, ZHANG Huiran. Constructing a material-domain knowledge graph based on natural language processing [J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(3): 386-398. |
[2] | HU Rui, LIU Qing, ZHANG Guangjie, LI Junjie, CHEN Xiaoyu, WEI Xiao, DAI Dongbo. Phase stability prediction of hign entropy alloys in aluminum matrix composites based on feature engneering and machine learning [J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(3): 476-484. |
[3] | MAI Jiaqi, XU Pengcheng, DING Song, SUN Yangting, LU Wencong. Prediction of pitting potential for stainless steel by support vector regression [J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(3): 485-491. |
[4] | WU Xing, HU Mingtao, DING Peng. Multi-modal data representation learning for ceramic coating materials [J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(3): 492-503. |
[5] | CHEN Shuizhou, WANG Xiaoshu, OUYANG Qiubao, ZHANG Rui. Data-driven based properties prediction and reverse design of aluminum matrix composites [J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(3): 512-522. |
[6] | TAO Li, ZHU Jiejiang, CAI Honghao. Classic machine learning for image recognition in wall column construction drawings [J]. Journal of Shanghai University(Natural Science Edition), 2021, 27(5): 940-949. |
[7] | LI Yihang, XIAO Bin, TANG Yuchao, LIU Fu, WANG Xiaomeng, LIU Yi. First-principles computation and machine learning of the energies and structures of spinel oxides [J]. Journal of Shanghai University(Natural Science Edition), 2021, 27(4): 635-649. |
[8] | YOU Yang, DU Wan, LI Weiju, CHEN Jingzhe. Two-dimensional material band gap prediction based on machine learning method [J]. Journal of Shanghai University(Natural Science Edition), 2020, 26(5): 824-833. |
[9] | LU Dong-hui,ZHANG Chuang,WANG Shi-gang. Image Colorization with Block Image Database and Texture Feature Points [J]. Journal of Shanghai University(Natural Science Edition), 2011, 17(1): 57-63. |
[10] | XU Jun;XIA Jiao-xiong;LI Qing. Database Cluster Preprocessing with Principal Component Extraction [J]. Journal of Shanghai University(Natural Science Edition), 2007, 13(6): 705-710 . |
[11] | GUO Jing kang;ZHANG Xiang yun;YANG Xu zhi. UBROAD: A Web Based Platform of Gene and Protein Data [J]. Journal of Shanghai University(Natural Science Edition), 2007, 13(1): 99-104 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||