Journal of Shanghai University(Natural Science Edition) ›› 2022, Vol. 28 ›› Issue (3): 512-522.doi: 10.12066/j.issn.1007-2861.2386
• Machine Learning • Previous Articles Next Articles
CHEN Shuizhou1, WANG Xiaoshu2, OUYANG Qiubao2, ZHANG Rui1,3,4()
Received:
2022-03-30
Online:
2022-06-30
Published:
2022-05-27
Contact:
ZHANG Rui
E-mail:ruizhang@shu.edu.cn
CLC Number:
CHEN Shuizhou, WANG Xiaoshu, OUYANG Qiubao, ZHANG Rui. Data-driven based properties prediction and reverse design of aluminum matrix composites[J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(3): 512-522.
[1] |
Dai D, Xu T, Wei X, et al. Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys[J]. Computational Materials Science, 2020, 175: 109618.
doi: 10.1016/j.commatsci.2020.109618 |
[2] |
Sun W, Zheng Y, Yang K, et al. Machine learning-assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials[J]. Science Advances, 2019, 5(11): eaay4275.
doi: 10.1126/sciadv.aay4275 |
[3] | Stanev V, Oses C, Kusne A G, et al. Machine learning modeling of superconducting critical temperature[J]. Computational Materials Science, 2018(1): 405-418. |
[4] |
Miracle D B. Metal matrix composites-from science to technological significance[J]. Composites Science and Technology, 2005, 65(15/16): 2526-2540.
doi: 10.1016/j.compscitech.2005.05.027 |
[5] |
Bakshi S R, Agarwal A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites[J]. Carbon, 2011, 49(2): 533-544.
doi: 10.1016/j.carbon.2010.09.054 |
[6] |
Jiang L, Li Z, Fan G, et al. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution[J]. Carbon, 2012, 50(5): 1993-1998.
doi: 10.1016/j.carbon.2011.12.057 |
[7] |
Zhang X, Li S, Pan D, et al. Microstructure and synergistic-strengthening efficiency of CNTs-SiCp dual-nano reinforcements in aluminum matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 105: 87-96.
doi: 10.1016/j.compositesa.2017.11.013 |
[8] |
Tjong S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering R: Reports, 2013, 74(10): 281-350.
doi: 10.1016/j.mser.2013.08.001 |
[9] |
Habibi M K, Hamouda A S, Gupta M. Hybridizing boron carbide (B$_4$C) particles with aluminum (Al) to enhance the mechanical response of magnesium based nano-composites[J]. Journal of Alloys and Compounds, 2013, 550: 83-93.
doi: 10.1016/j.jallcom.2012.09.128 |
[10] |
Rahimian M, Ehsani N, Parvin N, et al. The effect of particle size, sintering temperature and sintering time on the properties of Al-Al$_{2}$O$_{3}$ composites, made by powder metallurgy[J]. Journal of Materials Processing Technology, 2009, 209(14): 5387-5393.
doi: 10.1016/j.jmatprotec.2009.04.007 |
[11] |
Umasankar V, Anthony X M, Karthikeyan S. Experimental evaluation of the influence of processing parameters on the mechanical properties of SiC particle reinforced AA6061 aluminium alloy matrix composite by powder processing[J]. Journal of Alloys and Compounds, 2014, 582: 380-386.
doi: 10.1016/j.jallcom.2013.07.129 |
[12] |
Wu Y, Kim G Y, Anderson I E, et al. Fabrication of Al6061 composite with high SiC particle loading by semi-solid powder processing[J]. Acta Materialia, 2010, 58(13): 4398-4405.
doi: 10.1016/j.actamat.2010.04.036 |
[13] |
Rezayat M, Bahremand M R, Parsa M H, et al. Modification of as-cast Al-Mg/B$_{4}$C composite by addition of Zr[J]. Journal of Alloys and Compounds, 2016, 685: 70-77.
doi: 10.1016/j.jallcom.2016.05.226 |
[14] |
Amouri K, Kazemi S, Momeni A, et al. Microstructure and mechanical properties of Al-nano/micro SiC composites produced by stir casting technique[J]. Materials Science and Engineering A, 2016, 674: 569-578.
doi: 10.1016/j.msea.2016.08.027 |
[15] |
Slipenyuk A, Kuprin V, Milman Y, et al. Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio[J]. Acta Materialia, 2006, 54(1): 157-166.
doi: 10.1016/j.actamat.2005.08.036 |
[16] |
Tang F, Hagiwara M, Schoenung J M. Microstructure and tensile properties of bulk nanostructured Al-5083/SiCp composites prepared by cryomilling[J]. Materials Science and Engineering A, 2005, 407(1/2): 306-314.
doi: 10.1016/j.msea.2005.07.056 |
[17] |
Ma G N, Wang D, Liu Z Y, et al. An investigation on particle weakening in T6-treated SiC/Al-Zn-Mg-Cu composites[J]. Materials Characterization, 2019, 158: 109966.
doi: 10.1016/j.matchar.2019.109966 |
[18] |
Lee H S, Cho S Y, Kwon H. Reaction products of Al-Mg/B$_4$C composite fabricated by pressureless infiltration technique[J]. Materials Science and Engineering A, 2001, 302(2): 227-234.
doi: 10.1016/S0921-5093(00)01831-1 |
[19] |
Kalkanli A, Yilmaz S. Synthesis and characterization of aluminum alloy 7075 reinforced with silicon carbide particulates[J]. Materials & Design, 2008, 29(4): 775-780.
doi: 10.1016/j.matdes.2007.01.007 |
[20] |
Sharma M M, Amateau M F, Eden T J. Aging response of Al-Zn-Mg-Cu spray formed alloys and their metal matrix composites[J]. Materials Science and Engineering A, 2006, 424(1/2): 87-96.
doi: 10.1016/j.msea.2006.02.047 |
[21] |
Dasgupta R, Meenai H. SiC particulate dispersed composites of an Al-Zn-Mg-Cu alloy: property comparison with parent alloy[J]. Materials Characterization, 2005, 54(4/5): 438-445.
doi: 10.1016/j.matchar.2005.01.012 |
[22] |
Kumar S R, Gudimetla K, Venkatachalam P, et al. Microstructural and mechanical properties of Al 7075 alloy processed by equal channel angular pressing[J]. Materials Science and Engineering A, 2012, 533: 50-54.
doi: 10.1016/j.msea.2011.11.031 |
[23] |
Manoharan J J L. Effect of reinforcement size and matrix microstructure on the fracture properties of an aluminum metal matrix composite[J]. Materials Science and Engineering A, 1992, 150(2): 179-186.
doi: 10.1016/0921-5093(92)90110-M |
[24] |
Dasgupta H M. Effect of matrix strength on the mechanical properties of Al-Zn-Mg/SiCp composites[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(10): 1139-1145.
doi: 10.1016/S1359-835X(00)00062-2 |
[25] |
Min K H, Lee B H, Chang S Y, et al. Mechanical properties of sintered 7xxx series AI/SiCp composites[J]. Materials Letters, 2007, 61(11/12): 2544-2546.
doi: 10.1016/j.matlet.2006.09.062 |
[26] |
Ma W C, Zhang G J, Wang M M. Effect of SiC particles on ageing behaviour of SiCp/7075 composites[J]. Journal of Materials Science Letters, 1997, 16: 1867-1869.
doi: 10.1023/A:1018501709583 |
[27] | Lundberg S M, Lee S I. Consistent feature attribution for tree ensembles[DB/OL]. [2022-03-14]. https://arxiv.org/pdf/1706.06060.pdf. |
[1] | YUE Xichao, FENG Yan, LIU Jian, YU Yeyong, XI Kangjie, QIAN Quan. Database for materials genome engineering [J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(3): 399-412. |
[2] | HU Rui, LIU Qing, ZHANG Guangjie, LI Junjie, CHEN Xiaoyu, WEI Xiao, DAI Dongbo. Phase stability prediction of hign entropy alloys in aluminum matrix composites based on feature engneering and machine learning [J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(3): 476-484. |
[3] | MAI Jiaqi, XU Pengcheng, DING Song, SUN Yangting, LU Wencong. Prediction of pitting potential for stainless steel by support vector regression [J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(3): 485-491. |
[4] | WU Xing, HU Mingtao, DING Peng. Multi-modal data representation learning for ceramic coating materials [J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(3): 492-503. |
[5] | TAO Li, ZHU Jiejiang, CAI Honghao. Classic machine learning for image recognition in wall column construction drawings [J]. Journal of Shanghai University(Natural Science Edition), 2021, 27(5): 940-949. |
[6] | LI Yihang, XIAO Bin, TANG Yuchao, LIU Fu, WANG Xiaomeng, LIU Yi. First-principles computation and machine learning of the energies and structures of spinel oxides [J]. Journal of Shanghai University(Natural Science Edition), 2021, 27(4): 635-649. |
[7] | YOU Yang, DU Wan, LI Weiju, CHEN Jingzhe. Two-dimensional material band gap prediction based on machine learning method [J]. Journal of Shanghai University(Natural Science Edition), 2020, 26(5): 824-833. |
[8] | DU Chun-ye1,2, ZHANG Bo-feng1, CAI Li-zhi2. Domain-Oriented Analysis of Software Quality Features [J]. Journal of Shanghai University(Natural Science Edition), 2013, 19(3): 286-292. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||