[1] Jain A K, Murty M N, Flynn P J. Data clustering: a review [J]. ACM Computing Surveys,1999, 31(2): 264-323.
[2] 孙吉贵, 刘杰, 赵连宇. 聚类算法研究[J]. 软件学报, 2008, 19(1): 48-61.
[3] Kriegel H P, Kr¨oger P, Ser J, et al. Density-based clustering [J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2011, 1(3): 231-240.
[4] Sakai T, Tamura K, Kitakami H. A new density-based spatial clustering algorithm for extracting attractive local regions in georeferenced documents [J]. Lecture Notes in Engineering
and Computer Science, 2014, 2209(1): 360-365.
[5] Ester M, Kriegel H P, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise [C]//Proceedings 2nd International Conference on Knowledge Discovery and Data Mining. 1996: 226-231.
[6] Rodriguez A, Laio A. Clustering by fast search and find of density peaks [J]. Science, 2014, 344(6191): 1492-1496.
[7] 胡彩平, 秦小麟.一种改进的基于密度的抽样聚类算法[J].中国图象图形学报, 2007(11): 2031-2036.
[8] 周兵, 沈钧毅, 彭勤科. 基于随机抽样和聚类特征的聚类算法[J]. 西安交通大学学报, 2003(12): 1234-1237.
[9] Liao K, Liu G, Xiao L, et al. A sample-based hierarchical adaptive K-means clustering method for large-scale video retrieval [J]. Knowledge-Based Systems, 2013, 49: 123-133.
[10] Hastie T, Tibshirani R. Discriminant adaptive nearest neighbor classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(6): 607-616. |