Journal of Shanghai University(Natural Science Edition) ›› 2025, Vol. 31 ›› Issue (3): 383-402.doi: 10.12066/j.issn.1007-2861.2681
• Invited Review • Next Articles
YIN Xinmao, CHEN Pan, GAO Canfei, LI Gui
Received:
2025-03-07
Online:
2025-06-30
Published:
2025-07-22
CLC Number:
YIN Xinmao, CHEN Pan, GAO Canfei, LI Gui. Phase transitions and contact engineering in two-dimensional transition metal dichalcogenides:mechanisms, methods, and frontier advances[J]. Journal of Shanghai University(Natural Science Edition), 2025, 31(3): 383-402.
[1] Schaller R R. Moore's law:past, present and future[J]. IEEE Spectrum, 1997, 34(6):52-59. [2] Lundstrom M. Moore's law forever?[J]. Science, 2003, 299(5604):210-211. [3] Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2017, 2(8):17033. [4] Allain A, Kang J H, Banerjee K, et al. Electrical contacts to two-dimensional semiconductors[J]. Nature Materials, 2015, 14(12):1195-1205. [5] Wang Y, Chhowalla M. Making clean electrical contacts on 2D transition metal dichalcogenides[J]. Nature Reviews Physics, 2021, 4(2):101-112. [6] Voiry D, Mohite A, Chhowalla M. Phase engineering of transition metal dichalcogenides[J]. Chemical Society Reviews, 2015, 44(9):2702-2712. [7] Yin X, Tang C S, Zheng Y, et al. Recent developments in 2D transition metal dichalcogenides:phase transition and applications of the (quasi-)metallic phases[J]. Chemical Society Reviews, 2021, 50(18):10087-10115. [8] Duerloo K A N, Li Y, Reed E J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers[J]. Nature Communications, 2014, 5:4214. [9] Kuc A, Heine T. The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic flelds[J]. Chemical Society Reviews, 2015, 44(9):2603-2614. [10] Xu M, Liang T, Shi M, et al. Graphene-like two-dimensional materials[J]. Chemical Reviews, 2013, 113(5):3766-3798. [11] Nevill Francis Mott. The theory of crystal rectiflers[J]. Proceedings of the Royal Society of London Series A:Mathematical and Physical Sciences, 1939, 171(944):27-38. [12] Schottky W. Zur halbleitertheorie der sperrschicht- und spitzengleichrichter[J]. Zeitschrift für Physik, 1939, 113(5):367-414. [13] Bardeen J. Surface states and rectiflcation at a metal semi-conductor contact[J]. Physical Review, 1947, 71(10):717-727. [14] Kim C, Moon I, Lee D, et al. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides[J]. ACS Nano, 2017, 11(2):1588-1596. [15] Liu X, Choi M S, Hwang E, et al. Fermi level pinning dependent 2D semiconductor devices:challenges and prospects[J]. Advanced Materials, 2022, 34(15):2108425. [16] Gong C, Colombo L, Wallace R M, et al. The unusual mechanism of partial Fermi level pinning at metal{MoS2 interfaces[J]. Nano Letters, 2014, 14(4):1714-1720. [17] Das S, Chen H Y, Penumatcha A V, et al. High performance multilayer MoS2 transistors with scandium contacts[J]. Nano Letters, 2013, 13(1):100-105. [18] Wang Y, Kim J C, Wu R J, et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors[J]. Nature, 2019, 568(7750):70-74. [19] Shen P C, Su C, Lin Y, et al. Ultralow contact resistance between semimetal and monolayer semiconductors[J]. Nature, 2021, 593(7858):211-217. [20] Li W, Gong X, Yu Z, et al. Approaching the quantum limit in two-dimensional semiconductor contacts[J]. Nature, 2023, 613(7943):274-279. [21] Liu Y, Guo J, Zhu E, et al. Approaching the Schottky{Mott limit in van der Waals metal{ semiconductor junctions[J]. Nature, 2018, 557(7707):696-700. [22] Jain A, Szabó Á, Parzefall M, et al. One-dimensional edge contacts to a monolayer semiconductor[J]. Nano Letters, 2019, 19(10):6914-6923. [23] Wang J, Yao Q, Huang C W, et al. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer[J]. Advanced Materials, 2016, 28(37):8302-8308. [24] Ouyang B, Xiong S, Jing Y. Tunable phase stability and contact resistance of monolayer transition metal dichalcogenides contacts with metal[J]. npj 2D Materials and Applications, 2018, 2(1):13. [25] Schulman D S, Arnold A J, Das S. Contact engineering for 2D materials and devices[J]. Chemical Society Reviews, 2018, 47(9):3037-3058. [26] Dines M B. Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides[J]. Materials Research Bulletin, 1975, 10(4):287-291. [27] Py M A, Haering R R. Structural destabilization induced by lithium intercalation in MoS2 and related compounds[J]. Canadian Journal of Physics, 1983, 61(1):76-84. [28] Kappera R, Voiry D, Yalcin S E, et al. Metallic 1T phase source/drain electrodes for fleld efiect transistors from chemical vapor deposited MoS2 [J]. APL Materials, 2014, 2(9):092516. [29] Ma Y, Liu B, Zhang A, et al. Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices[J]. ACS Nano, 2015, 9(7):7383-7391. [30] Lee E K, Abdullah H, Torricelli F, et al. Boosting the optoelectronic properties of molybdenum diselenide by combining phase transition engineering with organic cationic dye doping[J]. ACS Nano, 2021, 15(11):17769-17779. [31] Nourbakhsh A, Zubair A, Sajjad R N, et al. MoS2 fleld-efiect transistor with sub-10 nm channel length[J]. Nano Letters, 2016, 16(12):7798-7806. [32] Yu J, Fu J, Ruan H, et al. Tailoring lithium intercalation pathway in 2D van der Waals heterostructure for high-speed edge-contacted floating-gate transistor and artiflcial synapses[J]. InfoMat, 2024, 6(10):e12599. [33] Lim J, Lee J I, Wang Y, et al. Photoredox phase engineering of transition metal dichalcogenides[J]. Nature, 2024, 633(8028):83-89. [34] Kochat V, Apte A, Hachtel J A, et al. Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism[J]. Advanced Materials, 2017, 29(43):1703754. [35] Yang S Z, Gong Y, Manchanda P, et al. Rhenium-doped and stabilized MoS2 atomic layers with basal-plane catalytic activity[J]. Advanced Materials, 2018, 30(51):1803477. [36] Li S, Hong J, Gao B, et al. Tunable doping of rhenium and vanadium into transition metal dichalcogenides for two-dimensional electronics[J]. Advanced Science, 2021, 8(11):2004438. [37] Lee H J, Choe M, Yang W, et al. Phase-engineered WS2 monolayer quantum dots by rhenium doping[J]. ACS Nano, 2023, 17(24):25731-25738. [38] Rhodes D, Chenet D A, Janicek B E, et al. Engineering the structural and electronic phases of MoTe2 through W substitution[J]. Nano Letters, 2017, 17(3):1616-1622. [39] Zeng Y, Wu S, Xu X, et al. One-step synthesis of two-dimensional metal{semiconductor circuitry based on W-triggered spatial phase engineering[J]. ACS Materials Letters, 2023, 5(9):2324-2331. [40] Zheng Y, Xiang D, Zhang J, et al. Controlling phase transition in WSe2 towards ideal n-type transistor[J]. Nano Research, 2021, 14(8):2703-2710. [41] Jiang J, Xu L, Qiu C, et al. Ballistic two-dimensional InSe transistors[J]. Nature, 2023, 616(7957):470-475. [42] Jiang J, Xu L, Du L, et al. Yttrium-doping-induced metallization of molybdenum disulflde for ohmic contacts in two-dimensional transistors[J]. Nature Electronics, 2024, 7(7):545-556. [43] Cho S, Kim S, Kim J H, et al. Phase patterning for ohmic homojunction contact in MoTe2[J]. Science, 2015, 349(6248):625-628. [44] Ryu H, Lee Y, Jeong J H, et al. Laser-induced phase transition and patterning of hBNEncapsulated MoTe2[J]. Small, 2023, 19(17):2205224. [45] Katagiri Y, Nakamura T, Ishii A, et al. Gate-tunable atomically thin lateral MoS2 Schottky junction patterned by electron beam[J]. Nano Letters, 2016, 16(6):3788-3794. [46] Zhu J, Wang Z, Yu H, et al. Argon plasma induced phase transition in monolayer MoS2 [J]. Journal of the American Chemical Society, 2017, 139(30):10216-10219. [47] Sharma C H, Surendran A P, Varghese A, et al. Stable and scalable 1T MoS2 with low temperature-coe-cient of resistance[J]. Scientiflc Reports, 2018, 8:12463. [48] Cheng Z, He S, Han X, et al. Improving electron mobility in MoS2 fleld-efiect transistors by optimizing the interface contact and enhancing the channel conductance through local structural phase transition[J]. Journal of Materials Chemistry C, 2024, 12(8):2794-2802. [49] Zhang J, Liu G, Yuan J, et al. Enhanced photoresponse in PdSe2 via local plasma treatment:Implication for advanced optoelectronic devices[J]. ACS Applied Nano Materials, 2025, 8(7):3511-3518. [50] Xiao M, Wu Z, Liu G, et al. Spatially controlled phase transition in MoTe2 driven by focused ion beam irradiations[J]. ACS Applied Materials & Interfaces, 2024, 16(24):31747-31755. [51] Chaudhary M, Anbalagan A K, Chuang K W, et al. Phase transition in two-dimensional monolayer (1L)-molybdenum disulflde induced by atomic S-basal plane gliding via synchrotron X-ray monochromatic beam radiation for superior electronic performance[J]. Materials Today, 2025, 84:28-38. [52] Wang Y, Xiao J, Zhu H, et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping[J]. Nature, 2017, 550(7677):487-491. [53] Zhang F, Zhang H, Krylyuk S, et al. Electric-fleld induced structural transition in vertical MoTe2 -and Mo1-xWxTe2-based resistive memories[J]. Nature Materials, 2018, 18(1):55-61. [54] Zakhidov D, Rehn D A, Reed E J, et al. Reversible electrochemical phase change in monolayer to bulk-like MoTe2 by ionic liquid gating[J]. ACS Nano, 2020, 14(3):2894-2903. [55] He H K, Jiang Y B, Yu J, et al. Ultrafast and stable phase transition realized in MoTe2-based memristive devices[J]. Materials Horizons, 2022, 9(3):1036-1044. [56] Chi Z H, Zhao X M, Zhang H, et al. Pressure-induced metallization of molybdenum disulflde[J]. Physical Review Letters, 2014, 113(3):036802. [57] Awate S S, Xu K, Liang J, et al. Strain-induced 2H to 1T0 phase transition in suspended MoTe2 using electric double layer gating[J]. ACS Nano, 2023, 17(22):22388-22398. [58] Manzanares-Negro Y, Quan J, Rassekh M, et al. Low resistance electrical contacts to few-layered MoS2 by local pressurization[J]. 2D Materials, 2023, 10(2):021003. [59] Yoo Y, DeGregorio Z P, Su Y, et al. In-plane 2H-1T0 MoTe2 homojunctions synthesized by flux-controlled phase engineering[J]. Advanced Materials, 2017, 29(16):1605461. [60] Zhang X, Jin Z, Wang L, et al. Low contact barrier in 2H/1T0 MoTe2 in-plane heterostructure synthesized by chemical vapor deposition[J]. ACS Applied Materials & Interfaces, 2019, 11(13):12777-12785. [61] Ma R, Zhang H, Yoo Y, et al. MoTe2 lateral homojunction fleld-efiect transistors fabricated using flux-controlled phase engineering[J]. ACS Nano, 2019, 13(7):8035-8046. [62] Yang S, Xu X, Xu W, et al. Large-scale vertical 1T0/2H MoTe2 nanosheet-based heterostructures for low contact resistance transistors[J]. ACS Applied Nano Materials, 2020, 3(10):10411- 10417. [63] Zhang Q, Wang X F, Shen S H, et al. Simultaneous synthesis and integration of twodimensional electronic components[J]. Nature Electronics, 2019, 2(4):164-170. [64] Xu X, Liu S, Han B, et al. Scaling-up atomically thin coplanar semiconductor{metal circuitry via phase engineered chemical assembly[J]. Nano Letters, 2019, 19(10):6845-6852. [65] Song S, Yoon A, Jang S, et al. Fabrication of p-type 2D single-crystalline transistor arrays with Fermi-level-tuned van der Waals semimetal electrodes[J]. Nature Communications, 2023, 14(1):4747. [66] Wang Y, Zhai W, Ren Y, et al. Phase-controlled growth of 1T0-MoS2 nanoribbons on 1H-MoS2 nanosheets[J]. Advanced Materials, 2024, 36(17):2307269. [67] Liu X, Shan J, Cao T, et al. On-device phase engineering[J]. Nature Materials, 2024, 23(10):1363-1369. |
[1] | ZHANG Canyu, YANG Guohong. Topological structure of free energy density of nematic liquid crystals [J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(6): 1094-1105. |
[2] | GAO Heng, HU Shunbo, REN Wei. Research progress on noncentrosymmetric topological Dirac semimetals [J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(5): 768-779. |
[3] | LI Yihang, XIAO Bin, TANG Yuchao, LIU Fu, WANG Xiaomeng, LIU Yi. First-principles computation and machine learning of the energies and structures of spinel oxides [J]. Journal of Shanghai University(Natural Science Edition), 2021, 27(4): 635-649. |
[4] | YUAN Ying, LI Weiju, CHEN Jingzhe. First-principles calculation of the rectification characteristic of single-molecule diodes [J]. Journal of Shanghai University(Natural Science Edition), 2021, 27(2): 298-306. |
[5] | YOU Yang, DU Wan, LI Weiju, CHEN Jingzhe. Two-dimensional material band gap prediction based on machine learning method [J]. Journal of Shanghai University(Natural Science Edition), 2020, 26(5): 824-833. |
[6] | LI Hui, XIN Zihua. Structural and electronic properties of nitrogen and boron substitutions of C$_{64}$-graphyne: the first-principle calculations [J]. Journal of Shanghai University(Natural Science Edition), 2020, 26(5): 816-823. |
[7] | MA Shuai, LI Yonghua, GAO Yubo. Activation mechanism of the effect of Ca on oxygen vacancy diffusion in grain boundary of alpha-Al2O3 [J]. Journal of Shanghai University(Natural Science Edition), 2020, 26(4): 562-569. |
[8] | QIAN Lijiang, LI Weiju, ZHANG Yibing, CHEN Jingzhe. Qualitative analysis of the asymmetric I-V curve in STM molecular junctions [J]. Journal of Shanghai University(Natural Science Edition), 2020, 26(2): 197-206. |
[9] | Chenggong LIANG, Yunbo ZHANG. Thermo dynamic properties of spin-orbit-coupled two-dimensional Fermi gases [J]. Journal of Shanghai University(Natural Science Edition), 2019, 25(6): 914-923. |
[10] | Kai YANG, Ning PEI, Qixin WANG, Lanlan CAI. Properties of a new magnetic biological patch [J]. Journal of Shanghai University(Natural Science Edition), 2019, 25(5): 767-775. |
[11] | Shan JIN, Xilian JIN, Zheng JIAO, Xing MENG. Homologous multiferroicity in Ca$_{\textbf{0.5}}$Ba$_{\textbf{0.5}}$MnO$_{\textbf{3}}$ from first-principle investigation [J]. Journal of Shanghai University(Natural Science Edition), 2019, 25(4): 590-596. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||