Journal of Shanghai University(Natural Science Edition) ›› 2022, Vol. 28 ›› Issue (3): 372-385.doi: 10.12066/j.issn.1007-2861.2377
• Data Collection, Database and Data Processing • Previous Articles Next Articles
Received:
2022-03-15
Online:
2022-06-30
Published:
2022-05-27
Contact:
WU Xing
E-mail:xingwu@shu.edu.cn
CLC Number:
CHEN Qian, WU Xing. Material data named entity recognition based on matching contextual lexical words and graph convolution[J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(3): 372-385.
[1] | Wang W R, Jiang X, Tian S H, et al. Automated pipeline for superalloy data by text mining[EB/OL]. [2022-01-13]. https://xueshu.baidu.com/usercenter/paper/show?paperid=1t1308h0f93g0xk0d73p0xs0bb071138. |
[2] | Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[J]. Advances in Neural Information Processing Systems, 2013, 26: 3111-3120. |
[3] | Pennington J, Socher R, Manning C. Glove: global vectors for word representation[C]// Conference on Empirical Methods in Natural Language Processing. 2014: 1532-1543. |
[4] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
pmid: 9377276 |
[5] | LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code[EB/OL]. [2021-11-30]. https://xueshu.baidu.com/usercenter/paper/show?paperid=3340934c7fc4377155350acaf8632c64&site=xueshu_se&hitarticle=1&sc_from=nuc. |
[6] | Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2019: 4171-4186. |
[7] | Liu Y, Ott M, Goyal N, et al. RoBERTa: a robustly optimized bert pretraining approach[DB/OL]. [2021-12-30]. https://arxiv.org/abs/1907.11692v1. |
[8] | Yang Z L, Dai Z H, Yang Y M, et al. XLNet: generalized autoregressive pretraining for language understanding[DB/OL]. [2022-01-05]. https://arxiv.org/abs/1906.08237. |
[9] | Grishman R. The NYU system for MUC-6 or where's the syntax?[C]// Proceedings of the 6th Conference on Messgae Understanding. 1995: 167-175. |
[10] | Zhang Y, Yang J. Chinese NER using lattice LSTM[C]// The 56th Annual Meeting of the Association for Computational Linguistics (ACL). 2018: 1554-1564. |
[11] | Wu F Z, Liu J X, Wu C H, et al. Neural Chinese named entity recognition via CNN-LSTM-CRF and Joint training with word segmentation[C]// The World Wide Web Conference. 2019: 3342-3348. |
[12] | 武惠, 吕立, 于碧辉. 基于迁移学习和 BiLSTM-CRF 的中文命名实体识别[J]. 小型微型计算机系统, 2019, 40(6): 1142-1147. |
[13] | 王红斌, 沈强, 线岩团. 融合迁移学习的中文命名实体识别[J]. 小型微型计算机系统, 2017, 38(2): 346-351. |
[14] | 王银瑞, 彭敦陆, 陈章, 等. Trans-NER: 一种迁移学习支持下的中文命名实体识别模型[J]. 小型微型计算机系统, 2019, 40(8): 1622-1626. |
[15] | 王栋, 李业刚, 张晓, 等. 基于准循环神经网络的中文命名实体识别[J]. 计算机工程与设计, 2020, 41(7): 2038-2043. |
[16] | Huang Z, Wei X, Kai Y. Bidirectional LSTM-CRF models for sequence tagging[EB/OL]. [2022-01-05]. https://xueshu.baidu.com/usercenter/paper/show?paperid=ee0eabacde06f546fe80624e0084647b. |
[17] | Peng M L, Xing X Y, Zhang Q, et al. Distantly supervised named entity recognition using positive-unlabeled learning[DB/OL]. [2022-01-17]. https://arxiv.org/abs/1906.01378. |
[18] | Liu Y J, Meng F D, Zhang J C, et al. GCDT: a global context enhanced deep transition architecture for sequence labeling[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019: 2431-2441. |
[19] | Lison P, Hubin A, Barnes J, et al. Named entity recognition without labelled data: a weak supervision approach[DB/OL]. [2022-01-18]. https://arxiv.org/abs/2004.14723. |
[20] | Lin B Y, Lee D H, Shen M, et al. TriggerNER: learning with entity triggers as explanations for named entity recognition[EB/OL]. [2021-12-05]. https://blog.csdn.net/comeonfly666/article/details/115421428. |
[21] | Dai Z, Yang Z L, Yang Y M, et al. Transformer-XL: attentive language models beyond a fixed-length context[DB/OL]. [2021-12-28]. https://arxiv.org/abs/1901.02860v3. |
[22] | Kip F T N, Welling M. Semi-supervised classification with graph convolutional networks[DB/OL]. [2021-12-01]. https://arxiv.org/abs/1609.02907. |
[23] | Sui D, Chen Y, Liu K, et al. Leverage lexical knowledge for chinese named entity recognition via collaborative graph network[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019: 3828-3838. |
[24] |
Lee L H, Lu Y. Multiple embeddings enhanced multi-graph neural networks for chinese healthcare named entity recognition[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(7): 2801-2810.
doi: 10.1109/JBHI.2020.3048700 |
[25] | Sang E F T K, de Meulder F. Introduction to the CoNLL-2003 shared task: language-independent named entity recognition[C]// Proceedings of the Seventh Conforence on Natual Language Learning at HLT-NAACL. 2003: 142-147. |
[26] | Weston L, Tshitoyan V, Dagdelen J, et al. Named entity recognition and normalization applied to large-scale information extraction from the materials science literature[EB/OL]. [2021-11-28]. https://xueshu.baidu.com/usercenter/paper/show?paperid=186e0410a6000eb0bh5f0ck0x0214874&site=xueshu_se. |
[27] |
Tshitoyan V, Dagdelen J, Weston L, et al. Unsupervised word embeddings capture latent knowledge from materials science literature[J]. Nature, 2019, 571(7763): 95-98.
doi: 10.1038/s41586-019-1335-8 |
[28] | Ramshaw L A, Marcus M P. Text chunking using transformation-based learning[EB/OL]. [2022-01-20]. https://xueshu.baidu.com/usercenter/paper/show?paperid=16cd0df4ac1924fb58369d003b87acd. |
[29] | Chiu J, Nichols E. Named entity recognition with bidirectional LSTM-CNNs[EB/OL]. [2021-10-30]. https://xueshu.baidu.com/usercenter/paper/show?paperid=216cd0df4ac1924fb58369d003b87acd&site=xueshu_se. |
[30] | Peters M, Neumann M, Iyyer M, et al. Deep contextualized word representations[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2018: 2227-2237. |
[31] | Martins P H, Marinho Z, Martins A. Joint learning of named entity recognition and entity linking[EB/OL]. [2022-01-24]. https://xueshu.baidu.com/usercenter/paper/show?paperid=1h4m025071620ag0hp0m08j0f8096616. |
[1] | YUE Xichao, FENG Yan, LIU Jian, YU Yeyong, XI Kangjie, QIAN Quan. Database for materials genome engineering [J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(3): 399-412. |
[2] | XU Yuqin, QIAN Quan. Blockchain based data copyright protection and combinatorial auction [J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(3): 413-426. |
[3] | LIU Fen, FAN Hongqiang, LÜ Tao, LI Qian, QIAN Quan. Kalman filter based method for processing small noisy sample data [J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(3): 427-439. |
[4] | YAO Yu, HU Tao, FU Jianxun, HU Shunbo. Regression modeling and multi-objective optimization for small sample scattered data [J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(3): 451-462. |
[5] | ZHANG Peng, ZHANG Rui. Feature selection based on reinforcement learning and its application in material informatics [J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(3): 463-475. |
[6] | MAI Jiaqi, XU Pengcheng, DING Song, SUN Yangting, LU Wencong. Prediction of pitting potential for stainless steel by support vector regression [J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(3): 485-491. |
[7] | CHEN Shuizhou, WANG Xiaoshu, OUYANG Qiubao, ZHANG Rui. Data-driven based properties prediction and reverse design of aluminum matrix composites [J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(3): 512-522. |
[8] | ZHANG Jin-yi1,2,3, XU De-zheng2, LI Ruo-han1,CHEN Xing-xiu1, XU Qin-le2. 9-axis MEMS-IMU real-time data fusion algorithm for attitude estimation [J]. Journal of Shanghai University(Natural Science Edition), 2015, 21(5): 547-559. |
[9] | SHEN Wen-feng, LI Feng-yong, ZHANG Xin-peng, YANG Qian-xing. Steganographic algorithm with histogram-preserving property [J]. Journal of Shanghai University(Natural Science Edition), 2015, 21(2): 190-196. |
[10] | YANG Qian-xing, LI Feng-yong, ZHANG Xin-peng, SHEN Wen-feng. Adaptive Robust Reversible Data Hiding Based on Modification of DCT Coefficient [J]. Journal of Shanghai University(Natural Science Edition), 2014, 20(5): 605-611. |
[11] | ZHANG Qi1, HUANG Chun-chun1, HAN Hong2, LI Chao-lun2, WANG Wen-ping2. CEUS Image Segmentation of Carotid Arteries Using Multi-scale Fuzzy Clustering and DGVF Model [J]. Journal of Shanghai University(Natural Science Edition), 2014, 20(5): 633-644. |
[12] | SHI Juan1, WANG De-yu1,2, TANG Gang1. Algorithm for Processing Optically Captured Motion Data [J]. Journal of Shanghai University(Natural Science Edition), 2014, 20(4): 489-497. |
[13] | LI Ping1, YANG Ning1, ZHONG Shao-shan2. An Integrated Indoor Location Technology Based on RFID and DR [J]. Journal of Shanghai University(Natural Science Edition), 2014, 20(4): 498-504. |
[14] | HOU Li-min, WU Wei-qi, ZHANG Xin-peng. Audio Re-sampling Detection in Audio Forensics Based on Second-Order Derivative [J]. Journal of Shanghai University(Natural Science Edition), 2014, 20(3): 304-312. |
[15] | HE Xiang, LUO Xiang-feng. Document Clustering Method Based on Association Link Network [J]. Journal of Shanghai University(Natural Science Edition), 2014, 20(2): 190-198. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||