上海大学学报(自然科学版)

• 通信与信息工程 • 上一篇    下一篇

一种全局优化的随机水平值逼近算法

杨毅1,2,彭拯1,严侃1,邬冬华1   

  1. 1.上海大学 理学院,上海 200444;2.丽水学院 数学系,浙江 丽水 323000

  • 收稿日期:2007-09-18 修回日期:1900-01-01 出版日期:2008-06-30 发布日期:2008-06-30
  • 通讯作者: 邬冬华

Stochastic Level-Value Approximation for Global Optimization

YANG Yi1,2,PENG Zheng1,YAN Kan1,WU Dong-hua1   

  1. 1.College of Sciences, Shanghai University, Shanghai 200444, China;
    2.Department of Mathematics, Lishui College, Lishui 323000, Zhejiang, China
  • Received:2007-09-18 Revised:1900-01-01 Online:2008-06-30 Published:2008-06-30
  • Contact: WU Dong-hua

摘要: 对一类在闭箱上处处有定义的单峰目标函数的全局优化问题,提出一种随机水平值逼近算法,证明了算法的渐近收敛性.数值结果验证了算法的有效性.

关键词: 渐近收敛性, 全局优化, 随机水平值逼近

Abstract:

We propose a stochastic level-value approximating method (SLVAM) for
global optimization problem that is defined in an entire box. We discuss and est
ablish a sufficient condition for the global optimality in probability measure
, and prove that the SLVAM algorithm is convergent in probability. Numerical results show its effectiveness.

Key words: convergence in probability, stochastic level-value approximation, global optimization

中图分类号: