上海大学学报(自然科学版) ›› 2024, Vol. 30 ›› Issue (5): 951-967.doi: 10.12066/j.issn.1007-2861.2471

• • 上一篇    下一篇

空化流对管路振动的影响与分析

吴泽荣1 , 翁培奋1 , 丁 珏1 , 李孝伟2   

  1. 1. 上海大学 上海市应用数学和力学研究所, 上海 200072; 2. 上海大学 无人艇工程研究院, 上海 200444
  • 出版日期:2024-10-30 发布日期:2024-11-07
  • 通讯作者: 翁培奋 (1964—), 男, 教授, 博士, 研究方向为空气动力学、计算流体力学. E-mail:pfweng@shu.edu.cn

Influence and analysis of cavitation flow on pipeline vibration

WU Zerong1 , WENG Peifen1 , DING Jue1 , LI Xiaowei2   

  1. 1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China; 2. Research Institute of USV Engineering, Shanghai University, Shanghai 200444, China
  • Online:2024-10-30 Published:2024-11-07

摘要: 管路系统空化流动诱导的管路振动是导致管路破坏的重要因素. 重点研究流动扰动与空化的相互作用, 以及对管路振动的影响. 采用 Zwart-Gerber-Belamri (ZGB) 空化模型研究小扰动下空化云随空化数及雷诺数的动态演变规律, 发现空化云会引起管路的不平衡力和流量脉动. 同时, 空化云会加剧不平衡力和流量脉动的脉动幅值以及改变频率的调幅变频特性. 在此基础上, 将空化激励等效为激励源项引入传统管路流固耦合动力模型, 得到一种改进的分析管路振动空化诱导机制的流固耦合动力学模型, 对空化激励下的管路进行振动求解, 给出临界空化数区间, 同时揭示小扰动下空化诱导管路振动的原因. 所得结果对研究空化管路系统的减振降噪及安全运行具有重要意义.

关键词: 空化, 流固耦合模型, 调幅变频, 输液管路, 振动

Abstract: Pipe vibration induced by cavitating flow in a pipe system is an important factor that damages the pipe system. This paper focuses on the interaction between flow disturbance and cavitation, as well as its impact on pipeline vibration. Zwart-GerberBelamri (ZGB) cavitation model is used to study the dynamic evolution of the cavitation cloud with the cavitation number and Reynolds number under the influence of small perturbations. The cavitation cloud is found to cause an unbalanced force and flow pulsation in the pipeline. Furthermore, the cavitation cloud has amplitude modulation and frequency conversion characteristics, which aggravate the amplitude and change the frequency of the unbalanced force and flow pulsation. Based on this, an excitation source term, cavitation excitation, is introduced into the fluid structure coupling dynamic model, and an improved fluid structure coupling dynamic model for analyzing the mechanism of pipeline vibration induced by cavitation is established. The equations for the vibration of a pipeline under cavitation excitation are solved, and the critical cavitation number interval is determined. Moreover, the causes of pipeline vibrations induced by cavitation under small perturbations are revealed. The results are essential for studying vibration and noise reduction and the safe operation of pipeline systems.

Key words: cavitation, fluid structure coupling model, amplitude modulation and frequency conversion, infusion pipeline, vibration

中图分类号: