上海大学学报(自然科学版) ›› 2023, Vol. 29 ›› Issue (3): 436-.doi: 10.12066/j.issn.1007-2861.2343

• • 上一篇    下一篇

3 维水翼非定常云空化结构分析和侵蚀风险预估

陈 洋1, 杨 朴2, 朱 兵2   

  1. (1. 长江勘测规划设计研究有限责任公司, 上海 200439;2. 上海理工大学 能源与动力工程学院, 上海 200093)
  • 收稿日期:2021-07-13 出版日期:2023-06-30 发布日期:2023-07-12
  • 通讯作者: 朱 兵 (1979—), 男, 副教授, 博士, 研究方向为水动力、空化与空蚀. E-mail:zbing@usst.edu.cn
  • 基金资助:
    国家自然科学基金资助项目 (91852117); 喷水推进技术重点实验室基金资助项目 (6142223190203)

Analysis of cloud cavitation structure and prediction of erosion risk for a three-dimensional hydrofoil

CHEN Yang1, YANG Pu2, ZHU Bing2   

  1. (1. Yangtze River Survey Planning and Design Research Co., Ltd., Shanghai 200439, China;2. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)
  • Received:2021-07-13 Online:2023-06-30 Published:2023-07-12

摘要: 空化是在流体设备中经常发生的现象, 而云空化结构的溃灭会释放出极高的压力, 常被认为是造成材料空蚀破坏的主要原因, 因此研究云空化的演化、溃灭和对壁面的冲击作用具有重要意义. 采用隐式大涡模拟方法和基于局部流场修正的空化模型, 对不同空化数下的NACA0015 3 维水翼进行了数值模拟, 考察了空化流动结构的演化过程, 并采用基于能量输运的侵蚀风险预估模型对空蚀风险区域进行了预估. 主要结论如下: (1) 基于局部流场修正的空化模型可更好地预测空化体积; 隐式大涡模拟方法较好地捕捉到了多种形式的非定常空化流动结构. (2) 空化数 σ 对云空化发生的程度、演化特征和溃灭位置的影响不同: 当 σ = 1.19时, 空化结构较为稳定, 翼型表面附着型腔体最大长度约在 0.4 倍的翼型弦长处, 而脱落腔体溃灭的位置约在 0.6 倍处; 当 σ = 1.07 时, 翼型表面附着型腔体最大长度约在 0.5 倍处, 而脱落腔体溃灭的位置约在 0.7 倍处; 当 σ = 0.95 时, 空化结构演化剧烈, 会出现多尺度腔体共同脱落现象, 翼型表面附着腔体最大长度约在 0.7 倍处, 而脱落腔体溃灭的位置在翼型尾缘附近.(3) 基于能量输运的预估模型可用于预测因空化腔体发生溃灭引起的翼型表面发生侵蚀破坏的风险区域.

关键词: 云空化结构演化, 空化模型, 隐式大涡模拟, 能量输运, 侵蚀风险预估

Abstract: Cavitation occurs commonly in fluid equipment. The collapse of the cloud cavitation structure releases extremely high pressure, which is usually considered the main cause of material cavitation erosion damage. This work aims to analyze the cavitation evolution and collapse and its erosion risk based on a numerical method. The implicit large eddy simulation method and a cavitation model based on local flow-field correction were applied to simulate the fluid fields of a three-dimensional NACA0015 hydrofoil with different cavitation numbers. The evolutionary process of the cavitation flow structure was investigated, and the erosion risk prediction model based on energy transport was used to estimate the cavitation risk area. The main conclusions are as follows: (1) The cavitation model based on local flow-field correction can better predict the cavitation volume, and the implicit large eddy simulation method can better capture the various forms of un-steady cavitation flow structures. (2) Different cavitation numbers have different effects on the cavitation occurrence intensity, evolution characteristics, and collapse location. When σ = 1.19, the cavitation structure is relatively stable, the maximum length of the attached cavity is 0.4 of the foil chord length, and the collapse location of the exfoliating cavity is 0.6. When σ = 1.07, the maximum length of the attached cavity is 0.5, and the collapse position of the detached cavity is 0.7. When σ = 0.95, the cavity structure evolves vio-lently, multiscale cavities are shed together, the maximum length of the cavity attached to the surface of the airfoil is 0.7, and the collapse location of the shed cavity is near the foil trailing edge. (3) The prediction model based on energy transport can be used to predict the risk area of erosion damage on the foil surface caused by cavitation cavity collapse.

Key words: evolution of cavity structure, cavitation model, implicit large eddy simula-tion, energy transportation, prediction of erosion risk area

中图分类号: