上海大学学报(自然科学版) ›› 2025, Vol. 31 ›› Issue (5): 797-812.doi: 10.12066/j.issn.1007-2861.2707
• 材料科学 • 上一篇
施利毅, 许跃峰
收稿日期:2025-08-28
发布日期:2025-11-12
通讯作者:
施利毅(1963-)男,教授,博士生导师,博士,研究方向为纳米材料及粉体.
E-mail:shiliyi@shu.edu.cn
基金资助:SHI Liyi, XU Yuefeng
Received:2025-08-28
Published:2025-11-12
摘要: 硅基负材料作为极具潜力的下一代负极候选材料,其理论比容量高达4 200 mAh$\cdot$g$^{-1}$,远超当前商用石墨负极材料(比容量仅为372 mAh$\cdot$g$^{-1}$).然而,硅基负极本征导电性差、巨大的体积膨胀效应以及表面副反应严重等问题,导致硅基负极循环稳定性差,且在高倍率等条件下性能不佳.在电池循环过程中,硅界面不稳定固体电解质界面(solid electrolyte interphase,SEI)膜的形成会严重导致电池内部极化增强、容量快速衰减以及循环寿命显著缩短,成为制约其应用的关键瓶颈.本文围绕硅材料现存问题,从结构调控与界面设计两方面介绍高比能硅基负极材料的构建,总结阐述了高比能硅基负极的设计思路与构建方法.通过深入研究硅负极材料和结构的设计原理,开发新材料、新技术和新工艺,解决上述问题,推动硅基负极向高倍率、长寿命、高安全性、宽温域的方向发展.
中图分类号:
施利毅, 许跃峰. 高比能硅基负极结构调控及界面设计[J]. 上海大学学报(自然科学版), 2025, 31(5): 797-812.
SHI Liyi, XU Yuefeng. Structural regulation and interface design of high speciflc energy silicon-based anode[J]. Journal of Shanghai University(Natural Science Edition), 2025, 31(5): 797-812.
| [1] Deng Y, Feng X, Qian Z, et al. Silicon anode modification strategies in solid-state lithium-ion batteries [J]. Materials Horizons, 2025, 12(15): 5513-5538. [2] Li J, Wang F, Xue L, et al. Research progress on the structure design of nano-silicon anode for high-energy lithium-ion battery [J]. Applied Energy, 2025, 390(23): 125820. [3] Xu M, Xu C, Sun S, et al. Synergistic multi-carbon strategy enabling Li storage performance of micron-Si anode for flexible lithium ion micro-capacitors [J]. Carbon, 2025, 241(11): 120386. [4] Jia T, Zhong G, Lv Y, et al. Prelithiation strategies for silicon-based anode in high energy density lithium-ion battery [J]. Green Energy & Environment, 2023, 8(5): 1325-1340. [5] Wu S, Wu H, Kong X, et al. In-situ construction of dual-coated silicon/carbon composite anode for fast-charging Li-ion batteries [J]. Chemical Engineering Journal, 2024, 502(24): 158032. [6] Kim M, Moon H, Kim S, et al. Tunable solvation structures for fast charging of micron-Si anodes in energy-dense lithium-ion batteries [J]. Chemical Engineering Journal, 2025, 511(9): 162079. [7] Yang Z, Trask S E, Wu X, et al. Efiect of Si content on extreme fast charging behavior in silicon-graphite composite anodes [J]. Batteries, 2023, 9(2): 138-150. [8] Zhu X, Feng W, Huang Y. Improving electrochemical performance of silicon anode through building "soft-hard" double-layer coating [J]. Green Energy & Environment, 2025, 10(3): 609- 618. [9] Li X, Zhang Z, Gong L, et al. Modelling and analysis of the volume change behaviors of Li-ion batteries with silicon-graphene composite electrodes [J]. Chemical Engineering Journal, 2023, 470(20): 144188. [10] Han M, Lin Z, Ji X, et al. Growth of flexible and porous surface layers of vertical graphene sheets for accommodating huge volume change of silicon in lithium-ion battery anodes [J]. Materials Today Energy, 2020, 17(3): 100445. [11] Liu J, Ma R, Zheng W, et al. Cross-linking network of soft-rigid dual chains to effectively suppress volume change of silicon anode [J]. The Journal of Physical Chemistry Letters, 2022, 13(33): 7712-7721. [12] Ma W, Wu H, Long T, et al. Bamboo inspired silicon anodes with ultrahigh initial coulombic efficiency and high capacity for the Li-ion batteries [J]. Small, 2023, 20(14): 2308109. [13] Wang J, Gao C, Yang Z, et al. Carbon-coated mesoporous silicon shell-encapsulated silicon nano-grains for high performance lithium-ion batteries anode [J]. Carbon, 2022, 192(7): 277-284. [14] Cai Y, Liu C, Yu Z, et al. Slidable and highly ionic conductive polymer binder for highperformance Si anodes in lithium-ion batteries [J]. Advanced Science, 2022, 10(6): 2205590. [15] Jin Y, Zhu B, Lu Z, et al. Challenges and recent progress in the development of Si anodes for lithium-ion battery [J]. Advanced Energy Materials, 2017, 7(23): 1700715. [16] Chen X, Wang B, Ye Y, et al. Design of electrodes and electrolytes for silicon-based anode lithium-ion batteries [J]. Energy & Environmental Materials, 2024, 8(2): e12838. [17] Dong Z, Gu H, Du W, et al. Si/Ti3SiC2 composite anode with enhanced elastic modulus and high electronic conductivity for lithium-ion batteries [J]. Journal of Power Sources, 2019, 431(22): 55-62. [18] Yao J, Zhu G, Huang J, et al. Si/graphite@C composite fabricated by electrostatic self-assembly and following thermal treatment as an anode material for lithium-ion battery [J]. Molecules, 2024, 29(17): 4108. [19] Liu Y, Su Z, Wang Y, et al. Fabrication of high-performance silicon anode materials for lithium-ion batteries by the impurity compensation doping method [J]. Journal of Solid State Electrochemistry, 2023, 27(4): 969-976. [20] Ma Y, Wu F, Chen N, et al. Reversing the dendrite growth direction and eliminating the concentration polarization via an internal electric field for stable lithium metal anodes [J]. Chemical Science, 2022, 13(32): 9277-9284. [21] Zhang R, Xiao Z, Lin Z, et al. Unraveling the fundamental mechanism of interface conductive network influence on the fast-charging performance of SiO-based anode for lithium-ion batteries [J]. Nano-Micro Letters, 2024, 16: 43. [22] Wang Y, Yang X, Yuan Y, et al. N-rich solid electrolyte interface constructed in situ via a binder strategy for highly stable silicon anode [J]. Advanced Functional Materials, 2023, 33(34): 2301716. [23] Seo J Y, Kim S, Kim J H, et al. Mechanical shutdown of battery separators: silicon anode failure [J]. Nature Communications, 2024, 15(1): 10134. [24] Cheng Z, Chen W, Zhang Y, et al. Enhanced cycleability of micron-size silicon anode by in situ polymerized polymer electrolyte [J]. Advanced Functional Materials, 2024, 34(48): 2408145. [25] Gan C, Ye X, Zhang S, et al. Current density induced growth of Li15Si4 alloy in silicon-carbon anodes during first lithiation process [J]. Journal of Energy Storage, 2021, 41(9): 102930. [26] Qu Y, Hou C, Tian H, et al. The structural design and electrochemical performances of tetrahedral encapsulated silicon and reduced graphene oxide-polydopamine film composites for anode materials [J]. Journal of Energy Storage, 2025, 119(15): 116404. [27] Li Z, Hu T, Yang J, et al. In situ constructing of rigid-soft coupling solid-electrolyte interphase on silicon electrode toward high-performance lithium ion batteries [J]. Small, 2023, 20(8): 2305991. [28] Köbbing L, Latz A, Horstmann B . Voltage hysteresis of silicon nanoparticles: chemomechanical particle-SEI model [J]. Advanced Functional Materials, 2023, 34(7): 2308818. [29] Quan L, Su Q, Lei H, et al. Integrated prelithiation and SEI engineering for high-performance silicon anodes in lithium-ion batteries [J]. National Science Review, 2025, 12(7): nwaf084. [30] Mu T, Sun Y, Wang C, et al. Long-life silicon anodes by conformal molecular-deposited polyurea interface for lithium ion batteries [J]. Nano Energy, 2022, 103(13): 107829. [31] Huang W, Wang Y, Lv L, et al. 1-Hydroxyethylidene-1, 1-diphosphonic acid: a multifunctional interface modifler for eliminating HF in silicon anode [J]. Energy Storage Materials, 2021, 42(9): 493-501. [32] Li A M, Wang Z, Pollard T P, et al. High voltage electrolytes for lithium-ion batteries with micro-sized silicon anodes [J]. Nature Communications, 2024, 15(1): 1206. [33] Wang L, Lu J J, Li S Y, et al. Controllable interface engineering for the preparation of high rate silicon anode [J]. Advanced Functional Materials, 2024, 34(40): 2403574. [34] Zhang S S. Unveiling electrochemical properties of silicon for stable cycling performance of silicon anode materials [J]. Journal of The Electrochemical Society, 2024, 171(7): 070518. [35] Wu F, Dong Y, Su Y, et al. Benchmarking the effect of particle size on silicon anode materials for lithium-ion batteries [J]. Small, 2023, 19(42): 2301301. [36] Huang L, Wang J, Hu Y, et al. Low-cost silicon cutting waste reused as a high-power-density silicon-based anode [J]. RSC Advances, 2024, 14(47): 34823-34832. [37] Shen L, Sun K, Xi F, et al. Conversion of photovoltaic waste silicon into amorphous silicon nanowire anodes [J]. Energy & Environmental Science, 2025, 18(9): 4348-4361. [38] Luo Y, Guo S, Gao Z, et al. Ethanol-controlled release strategy induced local solvation polymerization of silicates for high-performance nano-silicon anode [J]. Journal of Colloid and Interface Science, 2025, 689(13): 137224. [39] Qin G, Jia Z, Sun S, et al. Carbon-coated Si nanosheets as anode materials for highperformance lithium-ion batteries [J]. ACS Applied Nano Materials, 2024, 7(7): 7595-7604. [40] Wan N, Wang L, Li S Y, et al. Engineering high-rate anode materials via montmorillonite-derived silicon nanosheets [J]. Small, 2025: 2412705. [41] Mados E, Harpak N, Levi G, et al. Synthesis and electrochemical performance of siliconnanowire alloy anodes [J]. RSC Advances, 2021, 11(43): 26586-26593. [42] Wu H, Du N, Shi X, et al. Rational design of three-dimensional macroporous silicon as high performance Li-ion battery anodes with long cycle life [J]. Journal of Power Sources, 2016, 331(31): 76-81. [43] Song J, Kou L, Wang Y, et al. A three-dimensional porous Si/SiOx decorated by nitrogendoped carbon as anode materials for lithium-ion batteries [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 673(17): 131821. [44] Li Z, Liang Z, Ma Z, et al. Boosting the anode performance of the porous Si coated with polydopamine and cross-linked with sodium alginate [J]. Journal of Alloys and Compounds, 2024, 971(2): 172738. [45] Yang D, Lv T, Song J, et al. Enabling stable high lithium storage of Si anode via synergistic effects of nanosized Fe3C and partially graphitized porous carbon [J]. Chemical Engineering Journal, 2024, 496(17): 153844. [46] Li Z, Li D, Sun X, et al. Ion-conductive and mechanically robust chitosan-based network binder for silicon/graphite anode [J]. Journal of Energy Storage, 2024, 93(18): 112264. [47] Li C, Wang J, Wang X, et al. Regulating the mechano-electrochemistry of graphite-silicon hybrid anode through layered electrode structure design [J]. Journal of Energy Chemistry, 2025, 104(5): 176-184. [48] Zhao J, Wang B, Zhan Z, et al. Boron-doped three-dimensional porous carbon framework/carbon shell encapsulated silicon composites for high-performance lithium-ion battery anodes [J]. Journal of Colloid and Interface Science, 2024, 664(12): 790-800. [49] Lee Y, Naikwade M, Lee S W. Interface engineering of styrenic polymer grafted porous micro-silicon/polyaniline composite for enhanced lithium storage anode materials [J]. Polymers, 2024, 16(24): 3544. [50] Cheng Z, Lin H, Liu Y, et al. A stress-buffering hierarchically porous silicon/carbon composite for high-energy lithium-ion batteries [J]. Advanced Functional Materials, 2025: 2505207. [51] Xu W, Sun Z, Tang C, et al. Biomimetics-driven design of micron-sized SiO composites for high-performance lithium-ion batteries [J]. Advanced Functional Materials, 2025, 35(25): 2422743. [52] Hernandha R F H, Umesh B, Patra J, et al. Double nitrogenation layer formed using nitric oxide for enhancing Li+ storage performance, cycling stability, and safety of Si electrodes [J]. Advanced Science, 2024, 11(25): 2310062. [53] Li W, Xu S, Zhong C, et al. A LiF-pie-structured interphase for silicon anodes [J]. Nano-Micro Letters, 2025, 17(1): 322. [54] Ma H, Zhao B, Han Z, et al. Integrating robust SEI on recycled micro-sized silicon scrap for stable lithium ion battery [J]. Chemical Engineering Journal, 2025, 507(5): 160149. [55] Dou F, Weng Y, Wang Q, et al. In situ imaging analysis of the inhibition effect of functional coating on the volume expansion of silicon anodes [J]. Chemical Engineering Journal, 2021, 417(15): 128122. [56] Wang Q, Zhu M, Chen G, et al. High-performance microsized Si anodes for lithium-ion batteries: insights into the polymer conflguration conversion mechanism [J]. Advanced Materials, 2022, 34(16): 2109658. [57] Cheng H, Liu Y, Cheng Z, et al. Ti3C2Tx MXene wrapped, carbon-coated porous Si sheets for improved lithium storage performance [J]. Chinese Chemical Letters, 2024, 35(2): 108923. [58] Zhang Y, Wu B, Bi J, et al. Facilitating prelithiation of silicon carbon anode by localized high-concentration electrolyte for high-rate and long-cycle lithium storage [J]. Carbon Energy, 2024, 6(6): e480. [59] Sun D, Li J, Nie H. Incorporation of lithium oxide into silicon anode via magnetron cosputtering to optimize structural stability and cycling performance [J]. Ionics, 2024, 31(1): 177-188. [60] Chen C, Chen G, Nevar A, et al. Enhancing performance of silicon/graphene composites by transition lattice interfaces constructed using plasma [J]. Surfaces and Interfaces, 2024, 50(7): 104468. [61] Han Z, Maitarad P, Yodsin N, et al. Catalysis-induced highly-stable interface on porous silicon for high-rate lithium-ion batteries [J]. Nano-Micro Letters, 2025, 17(1): 200. [62] Cheng Z, Lin H, Liu Y, et al. Enabling the transport dynamics and interfacial stability of porous si anode via rigid and flexible carbon encapsulation for high-energy lithium storage [J]. Small, 2024, 20(52): 2407560. [63] Zou X, Li M, Li H, et al. Three-dimensional CNTs boosting the conductive conflnement structure of silicon/carbon anodes in lithium-ion batteries [J]. Chemical Engineering Journal, 2024, 498(19): 155573. [64] Fan X, Cai T, Wang S, et al. Carbon nanotube-reinforced dual carbon stress-buffering for highly stable silicon anode material in lithium-ion battery [J]. Small, 2023, 19(30): 2300431. [65] Guan X, Zhang Y, Kinloch I A, et al. "Nanoskeleton" Si-SiOx/C anodes toward highly stable lithium-ion batteries [J]. ACS Applied Materials & Interfaces, 2025, 17(7): 10580-10592. |
| [1] | 王尚岱, 黄守双, 胡张军, 陈志文. 金属有机骨架衍生的 NiFe2O4/Co9S8复合催化剂的合成及其电催化析氧性能[J]. 上海大学学报(自然科学版), 2021, 27(4): 706-716. |
| [2] | 靳苏皖, 牛维亚, 张玲, 毛纤勇. 镧氧化物/膨胀石墨复合吸附剂的制备、除磷性能及机理[J]. 上海大学学报(自然科学版), 2021, 27(4): 686-695. |
| [3] | 程二波, 王尚岱, 黄守双, 陈大勇, 胡张军, 陈志文. MnO@CoMn$_{\textbf{2}}$O$_{\textbf{4}}$/N-C纳米线复合材料的制备及其作为锂离子电池阳极材料的电化学性能[J]. 上海大学学报(自然科学版), 2021, 27(2): 400-410. |
| [4] | 李琦, 罗志刚, 陈大勇, 黄守双, 胡张军, 陈志文. 氧化锌/石墨烯复合材料的制备及其光催化性能[J]. 上海大学学报(自然科学版), 2020, 26(3): 425-432. |
| [5] | 罗志刚, 李琦, 陈大勇, 黄守双, 胡张军, 陈志文. MnO2@ZnO/C 复合材料的制备及电化学性能[J]. 上海大学学报(自然科学版), 2020, 26(1): 132-142. |
| [6] | 郜子明, 董敬余, 陈大勇, 黄守双, 胡张军, 陈志文. 金属有机骨架材料 ZnCo$_{\textbf{2}}$O$_{\textbf{4}}$/ZnO 中空纳米盒的制备及其电化学性能[J]. 上海大学学报(自然科学版), 2019, 25(6): 950-956. |
| [7] | 梁绮娴, 宫腾, 赵永梅, 朱守荣. 一种亚氨基二乙酸衍生物的多核铜配合物的固液性质[J]. 上海大学学报(自然科学版), 2018, 24(2): 265-271. |
| [8] | 向怡弦 董晓雯 潘庆谊 程知萱 徐甲强. 新方法制备三氧化钼/聚苯胺插层复合物[J]. 上海大学学报(自然科学版), 2009, 15(4): 417-420. |
| [9] | 刘新文;俎建华;包伯荣;吴明红;童龙;孙贵生. 电子束辐照制备Fe3O4/PAM磁性核壳微球[J]. 上海大学学报(自然科学版), 2008, 14(2): 183-186 . |
| [10] | 张义丙,金汴骏. 氧化铜公度与非公度反铁磁相变的比热研究[J]. 上海大学学报(自然科学版), 1995, 1(2): 159-162. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||