[1] Shor P W. Algorithms for quantum computation: discrete logarithms and factoring [C]// Proceedings of the 35th Annual Symposium on Foundations of Computer Science. 1994: 124-134. [2] Grover L K. Quantum mechanics helps in searching for a needle in a haystack [J]. Physical Review Letters, 1997, 79(2): 325. [3] Preskill J. Quantum computing in the NISQ era and beyond [J]. Quantum, 2018, 2: 79. [4] Solinas P, Sassetti M, Truini P, et al. On the stability of quantum holonomic gates [J]. New Journal of Physics, 2012, 14(9): 093006. [5] Zanardi P, Rasetti M. Holonomic quantum computation [J]. Physics Letters A, 1999, 264(2/3): 94-99. [6] Xu G F, Zhang J, Tong D M, et al. Nonadiabatic holonomic quantum computation in decoherence-free subspaces [J]. Physical Review Letters, 2012, 109(17): 170501. [7] Pachos J, Zanardi P, Rasetti M. Non-Abelian Berry connections for quantum computation [J]. Physical Review A, 1999, 61(1): 010305. [8] Pachos J, Zanardi P. Quantum holonomies for quantum computing [J]. International Journal of Modern Physics B, 2001, 15(9): 1257-1285. [9] Sjoqvist E, Tong D M, Andersson L M, et al. Non-adiabatic holonomic quantum computation [J]. New Journal of Physics, 2012, 14(10): 103035. [10] Duan L M, Cirac J I, Zoller P. Geometric manipulation of trapped ions for quantum computation [J]. Science, 2001, 292(5522): 1695-1697. [11] Thomas J, Lababidi M, Tian M. Robustness of single-qubit geometric gate against systematic error [J]. Physical Review A, Atomic, Molecular, and Optical Physics, 2011, 84(4): 042335. [12] Zheng S B, Yang C P, Nori F. Comparison of the sensitivity to systematic errors between nonadiabatic non-Abelian geometric gates and their dynamical counterparts [J]. Physical Review A, 2016, 93(3): 032313. [13] Jing J, Lam C H, Wu L A. Non-abelian holonomic transformation in the presence of classical noise [J]. Physical Review A, 2017, 95(1): 012334. [14] Sjoqvist E. Geometric phases in quantum information [J]. International Journal of Quantum Chemistry, 2015, 115(19): 1311-1326. [15] Sjoqvist E, Azimi M V, Canali C M. Conceptual aspects of geometric quantum computation [J]. Quantum Information Processing, 2016, 15: 3995-4011. [16] Zhang J, Kyaw T H, Filipp S, et al. Geometric and holonomic quantum computation [J]. Physics Reports, 2023, 1027: 1-53. [17] Xiang B W, Keiji M. Nonadiabatic conditional geometric phase shift with NMR [J]. Physical Review Letters, 2001, 87(9): 097901. [18] Zhu S L, Wang Z. Implementation of universal quantum gates based on nonadiabatic geometric phases [J]. Physical Review Letters, 2002, 89(9): 097902. [19] Carlini A, Koike T. Time-optimal transfer of coherence [J]. Physical Review A, Atomic, Molecular, and Optical Physics, 2012, 86(5): 054302. [20] Carlini A, Koike T. Time-optimal unitary operations in Ising chains: unequal couplings and flxed fldelity [J]. Journal of Physics A: Mathematical and Theoretical, 2013, 46(4): 045307. [21] Wang X, Allegra M, Jacobs K, et al. Quantum brachistochrone curves as geodesics: obtaining accurate minimum-time protocols for the control of quantum systems [J]. Physical Review Letters, 2015, 114(17): 170501. [22] Roos I, MØlmer K. Quantum computing with an inhomogeneously broadened ensemble of ions: suppression of errors from detuning variations by specially adapted pulses and coherent population trapping [J]. Physical Review A, 2004, 69(2): 022321. [23] Geng J P, Wu Y, Wang X T, et al. Experimental time-optimal universal control of spin qubits in solids [J]. Physical Review Letters, 2016, 117(17): 170501 [24] Aharonov Y, Anandan J. Phase change during a cyclic quantum evolution [J]. Physical Review Letters, 1987, 58(16): 1593. [25] Berry M V. Quantal phase factors accompanying adiabatic changes [J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1984, 392(1802): 45-57. [26] 杨小勇, 延英, 陆杰. 非绝热几何量子逻辑门的脉冲设计[J]. 量子光学学报, 2023, 29(2): 41-50. [27] Dong Y, Zhang S C, Zheng Y, et al. Experimental implementation of universal holonomic quantum computation on solid-state spins with optimal control [J]. Physical Review Applied, 2021, 16(2): 024060. [28] Ruschaupt A, Chen X, Alonso D, et al. Optimally robust shortcuts to population inversion in two-level quantum systems [J]. New Journal of Physics, 2012, 14(9): 093040. [29] Daems D, Ruschhaupt A, Sugny D, et al. Robust quantum control by a single-shot shaped pulse [J]. Physical Review Letters, 2013, 111(5): 050404. |