[1] Mermin N D, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or twodimensional isotropic heisenberg models [J]. Physical Review Letters, 1966, 17(22): 1133-1136. [2] Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals [J]. Proceedings of the National Academy of Sciences, 2005, 102(30): 10451-10453. [3] Novoselov K S, Geim A K, Morozov S V, et al. Electric fleld efiect in atomically thin carbon fllms [J]. Science, 2004, 306(5696): 666-669. [4] Gong C, Li L, Li Z L, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals [J]. Nature, 2017, 546(7657): 265-269. [5] Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit [J]. Nature, 2017, 546(7657): 270-273. [6] Geim A K, Grigorieva I V. Van der Waals heterostructures [J]. Nature, 2013, 499(7459): 419-425. [7] Gong C, Zhang X. Two-dimensional magnetic crystals and emergent heterostructure devices [J]. Science, 2019, 363(6428): eaav4450. [8] Li X M, Tao L, Chen Z F, et al. Graphene and related two-dimensional materials: structureproperty relationships for electronics and optoelectronics [J]. Applied Physics Reviews, 2017, 4(2): 021306. [9] Zhuo W Z, Lei B, Wu S, et al. Manipulating ferromagnetism in few-layered Cr2Ge2Te6 [J]. Advanced Materials, 2021, 33(31): 2008586. [10] Iimori R, Hu S, Mitsuda A, et al. Substantial enhancement of perpendicular magnetic anisotropy in van der Waals ferromagnetic Fe3GaTe2 fllm due to pressure application [J]. Communications Materials, 2024, 5(1): 235. [11] Huang P, Zhang P, Xu S, et al. Recent advances in two-dimensional ferromagnetism: materials synthesis, physical properties and device applications [J]. Nanoscale, 2020, 12(4): 2309-2327. [12] Seo J, Kim D Y, An E S, et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal [J]. Science Advances, 2020, 6(3): eaay8912. [13] May A F, Ovchinnikov D, Zheng Q, et al. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2 [J]. ACS Nano, 2019, 13(4): 4436-4442. [14] Hu X, Yao D X, Cao K. (Fe1-xNix)5GeTe2: an antiferromagnetic triangular Ising lattice with itinerant magnetism [J]. Physical Review B, 2022, 106(22): 224423. [15] Tian C, Pan F, Xu S, et al. Tunable magnetic properties in van der Waals crystals (Fe1-xNix)5GeTe2 [J]. Applied Physics Letters, 2020, 116(20): 202402. [16] Chen X, Shao Y T, Chen R, et al. Pervasive beyond room-temperature ferromagnetism in a doped van der Waals magnet [J]. Physical Review Letters, 2022, 128(21): 217203. [17] Zhang H, Raftrey D, Chan Y T, et al. Room-temperature skyrmion lattice in a layered magnet (Fe0.5Co0.5)5GeTe2 [J]. Science Advances, 2022, 8(12): eabm7103. [18] Coey J M D, Berkowitz A E, Balcells L, et al. Magnetoresistance of magnetite [J]. Applied Physics Letters, 1998, 72(6): 734-736. [19] Kent A D, Yu J, Rudiger U, et al. Domain wall resistivity in epitaxial thin fllm microstructures [J]. Journal of Physics: Condensed Matter, 2001, 13(25): R461-R488. [20] Chen J, Li H, Ding B, et al. Tunable positive magnetoresistance and crossover from weak antilocalization to weak localization transition in half-Heusler compounds RPtBi (R = lanthanide) [J]. Applied Physics Letters, 2020, 116(10): 101902. [21] Bergmann G. Localization in thin fllms: a time-of-flight-experiment with conduction electrons [J]. Physica B+C, 1984, 126(1/2/3): 229-234. [22] Li Z G, Zhang J C, Zhou M J, et al. Weak localization in 1T-TiSe2 microflakes [J]. Physical Review B, 2020, 101(15): 155111. [23] Li C Z, Wang L X, Liu H, et al. Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires [J]. Nature Communications, 2015, 6(1): 10137. [24] Huang X C, Zhao L X, Long Y J, et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal taAs [J]. Physical Review X, 2015, 5(3): 031023. [25] Kaul S N. Spin-wave and spin-fluctuation contributions to the magnetoresistance of weak itinerant-electron ferromagnets [J]. Journal of Physics: Condensed Matter, 2005, 17(36): 5595- 5612. [26] Khosl R P, Fischer J R. Magnetoresistance in degenerate CdS: localized magnetic moments [J]. Physical Review B, 1970, 2(10): 4084-4097. [27] Raquet B, Viret M, Sondergard E, et al. Electron-magnon scattering and magnetic resistivity in 3D ferromagnets [J]. Physical Review B, 2002, 66(2): 024433. [28] He Y, Gayles J, Yao M, et al. Large linear non-saturating magnetoresistance and high mobility in ferromagnetic MnBi [J]. Nature Communications, 2021, 12(1): 4576. [29] Hu J, Rosenbaum T F. Classical and quantum routes to linear magnetoresistance [J]. Nature Materials, 2008, 7(9): 697-700. [30] Feng J Y, Pang Y, Wu D S, et al. Large linear magnetoresistance in Dirac semimetal Cd3As2 with Fermi surfaces close to the Dirac points [J]. Physical Review B, 2015, 92(8): 081306. [31] Jung J, Laksono E, Dasilva A M, et al. Moir band model and band gaps of graphene on hexagonal boron nitride [J]. Physical Review B, 2017, 96(8): 085442. [32] Zou X, Wang R, Xie M, et al. Nonsaturating linear magnetoresistance manifesting twodimensional transport in wet-chemical patternable Bi2O2Te thin fllms [J]. Nano Letters, 2023, 23(24): 11742-11748. [33] Pan H, Singh A K, Zhang C, et al. Room-temperature tunable tunneling magnetoresistance in Fe3GaTe2/WSe2/Fe3GaTe2 van der Waals heterostructures [J]. InfoMat, 2024, 6(6): e12504. [34] Escolar J, Peimyoo N, Craciun M F, et al. Anisotropic magnetoconductance and Coulomb blockade in defect engineered Cr2Ge2Te6 van der Waals heterostructures [J]. Physical Review B, 2019, 100(5): 054420. [35] Li Y J, Yin R T, Li M Z, et al. Observation of Yu-Shiba-Rusinov-like states at the edge of CrBr3/NbSe2 heterostructure [J]. Nature Communications, 2024, 15(1): 10121. [36] Fan K, Jin H, Huang B, et al. Artiflcial superconducting Kondo lattice in a van der Waals heterostructure [J]. Nature Communications, 2024, 15(1): 8797. [37] Li P G, Zhang J H, Zhu D, et al. Observation of in-gap states in a two-dimensional CrI2/NbSe2 heterostructure [J]. Nano Letters, 2024, 24(31): 9468-9476. [38] Hu G J, Wang C L, Wang S S, et al. Long-range skin Josephson supercurrent across a van der Waals ferromagnet [J]. Nature Communications, 2023, 14(1): 1779. |