上海大学学报(自然科学版) ›› 2025, Vol. 31 ›› Issue (3): 383-402.doi: 10.12066/j.issn.1007-2861.2681

• 特邀综述 •    下一篇

二维过渡金属硫族化合物的相变和接触工程:机理、方法与前沿进展

尹鑫茂, 陈攀, 高灿飞, 李桂   

  1. 上海大学 理学院 上海市高温超导重点实验室, 上海 200444
  • 收稿日期:2025-03-07 出版日期:2025-06-30 发布日期:2025-07-22
  • 通讯作者: 尹鑫茂(1988-),男,教授,博士生导师,博士,研究方向为凝聚态物理. E-mail:yinxinmao@shu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12374378,52172271,52307026);国家重点研发计划资助项目(2022YFE03150200);上海市科技创新行动计划(22511100200,23511101600);中科院先导专项(XDB25000000)

Phase transitions and contact engineering in two-dimensional transition metal dichalcogenides:mechanisms, methods, and frontier advances

YIN Xinmao, CHEN Pan, GAO Canfei, LI Gui   

  1. Shanghai Key Laboratory of High Temperature Superconductors, College of Sciences, Shanghai University, Shanghai 200444, China
  • Received:2025-03-07 Online:2025-06-30 Published:2025-07-22

摘要: 二维过渡金属硫族化合物(transition metal dichalcogenides,TMDs)和金属界面之间的费米能级钉扎效应严重限制了载流子输运效率.二维TMDS的相变工程为金属-半导体接触的改善提供了突破性方案.从相变的物理机制出发,揭示晶格对称性破缺(2H→1T/1T)通过重构界面电子态与原子排布,实现3大功能协同优化:(1)抑制金属诱导间隙态(metal-induced gap states,MIGS);(2)调控能带对齐;(3)构筑原子级平滑界面.系统探讨了电荷掺杂、外场激励和热力学调控相变的策略:原子插层调控轨道电子填充以稳定金属相,外场(光、电、应力)通过能量-动量耦合触发晶格重构,而合金化与热力学合成则通过能垒设计实现异质相空间可控生长.这些方法揭示了“电子态-晶格序-界面输运”的多尺度关联,为低维器件高效接触提供理论支撑.进一步指出,相变动态过程的原子尺度解析、异质相界面稳定性提升及跨尺度集成工艺是未来核心挑战,需融合多学科手段推动二维电子器件从基础创新向高密度集成电路发展.

关键词: 相变工程, 接触电阻, 场效应晶体管, 欧姆接触, 肖特基势垒

Abstract: The Fermi level pinning effect at the interface between two-dimensional transition metal dichalcogenides(TMDs) and metals severely limits carrier transport efficiency.Phase transition engineering in 2D TMDs offers a breakthrough strategy for improving metal-semiconductor contacts. This work elucidates the physical mechanisms of phase transitions, revealing that lattice symmetry breaking(2H→1T/1T) synergistically optimizes three critical functionalities by reconfiguring interfacial electronic states and atomic arrangements:(1) suppression of metal-induced gap states(MIGS),(2) modulation of band alignment, and(3) construction of atomically smooth interfaces. Systematic strategies for phase transition control are explored, including charge doping, external field stimuli, and thermodynamic regulation. Atomic intercalation stabilizes metallic phases by tailoring orbital electron filling, while external fields(optical, electrical, or strain) trigger lattice reconstruction through energy-momentum coupling. Alloying and thermodynamic synthesis enable spatially controlled growth of heterophases via energy barrier engineering. These approaches establish multiscale correlations among electronic states, lattice ordering, and interfacial transport, providing theoretical foundations for high-efficiency contacts in lowdimensional devices. Future challenges lie in achieving atomic-scale resolution of dynamic phase transitions, enhancing heterophase interfacial stability, and developing cross-scale integration processes. Addressing these issues will require multidisciplinary efforts to advance 2D electronic devices from fundamental innovation toward high-density integrated circuits.

Key words: phase engineering, contact resistance, field effect transistor, ohmic contact, schottky height

中图分类号: