[1] |
Martinez-Santos M, Probst A, Garcia-Garcia J, et al. Influence of anthropogenic inputs and a high-magnitude flood event on metal contamination pattern in surface bottom sediments from the Deba River urban catchment[J]. Science of the Total Environment, 2015, 514: 10-25.
doi: 10.1016/j.scitotenv.2015.01.078
|
[2] |
李继洲, 吴海旭, 姜万, 等. 南京城区黑臭河道底泥污染特征及生态风险评价[J]. 长江流域资源与环境, 2015, 24(11): 1913-1919.
|
[3] |
李斌, 柏杨巍, 刘丹妮, 等. 全国地级及以上城市建成区黑臭水体的分布、存在问题及对策建议[J]. 环境工程学报, 2019, 13(3): 511-518.
|
[4] |
Peng J F, Song Y H, Yuan P, et al. The remediation of heavy metals contaminatedsediment[J]. Journal of Hazardous Materials, 2009, 161(2/3): 633-640.
doi: 10.1016/j.jhazmat.2008.04.061
|
[5] |
Choi M, Park J, Cho D, et al. Tracing metal sources in core sediments of the artificial lake An-Dong, Korea: concentration and metal association[J]. Science of the Total Environment, 2015, 527: 384-392.
|
[6] |
Zhang G L, Bai J H, Xiao R, et al. Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China[J]. Chemosphere, 2017, 184: 278-288.
doi: 10.1016/j.chemosphere.2017.05.155
|
[7] |
Fathollahzadeh H, Kaczala F, Bhatnagar A, et al. Significance of environmental dredging on metal mobility from contaminated sediments in the Oskarshamn Harbor, Sweden[J]. Chemosphere, 2015, 119: 445-451.
doi: S0045-6535(14)00858-3
pmid: 25084063
|
[8] |
Beans C. Phytoremediation advances in the lab but lags in the field[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(29): 7475-7477.
|
[9] |
Liu X Y, Mao Y, Zhang X Y, et al. Effects of PASP/NTA and TS on the phytoremediation of pyrene-nickel contaminated soil by Bidens pilosa L.[J]. Chemosphere, 2019, 237: 125027.
|
[10] |
张杏锋, 夏汉平, 李志安, 等. 牧草对重金属污染土壤的植物修复综述[J]. 生态学杂志, 2009, 28(8): 1640-1646.
|
[11] |
Anning A K, Akoto R. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides[J]. Ecotoxicology Environmental Safety, 2018, 148: 97-104.
doi: 10.1016/j.ecoenv.2017.10.014
|
[12] |
朱俊艳, 于玲玲, 黄青青, 等. 油菜-海州香薷轮作修复铜镉复合污染土壤: 大田试验[J]. 农业环境科学学报, 2013, 32(6): 1166-1171.
|
[13] |
Shahbaz A K, Lewinska K, Iqbal J, et al. Improvement in productivity, nutritional quality, and antioxidative defense mechanisms of sunflower (Helianthus annuus L.) and maize (Zea mays L.) in nickel contaminated soil amended with different biochar and zeolite ratios[J]. Journal of Environmental Management, 2018, 218: 256-270.
doi: S0301-4797(18)30428-6
pmid: 29684778
|
[14] |
谢开云, 何峰, 李向林, 等. 我国紫花苜蓿主产田土壤养分和植物养分调查分析[J]. 草业学报, 2016, 25(3): 202-214.
|
[15] |
李霞, 徐霞, 龚容, 等. 沿气温梯度中国森林生物量分布特征[J]. 北京师范大学学报 (自然科学版), 2017, 53(4): 458-464.
|
[16] |
杨振芳, 孟瑶, 顾万荣, 等. 化控和密度措施对东北春玉米叶片衰老及产量的影响[J]. 华北农学报, 2015, 30(4): 117-125.
|
[17] |
李莉, 王元素. 白三叶初始密度对种群动态和生产力的影响[J]. 草地学报, 2019, 27(3): 745-750.
|
[18] |
韦新东, 黄一格, 王颖. 镉、铅胁迫对白三叶种子萌发及幼苗生长的影响[J]. 北方园艺, 2016(2): 71-74.
|
[19] |
熊作明, 杨佳欢, 王丽楠. 3 种草坪草对土壤重金属铅、镉胁迫的响应[J]. 扬州大学学报 (农业与生命科学版), 2019, 40(6): 117-121.
|
[20] |
Bini C, Wahsha M, Fontana S, et al. Effects of heavy metals on morphological characteristics of Taraxacum officinale web growing on mine soils in NE Italy[J]. Journal of Geochemical Exploration, 2012, 123: 101-108.
doi: 10.1016/j.gexplo.2012.07.009
|
[21] |
刘新蕾. 重金属污染疏浚底泥的植物-微生物联合修复[D]. 天津: 天津科技大学, 2015.
|
[22] |
谷雨, 蒋平, 谭丽, 等. 6 种植物对土壤中镉的富集特性研究[J]. 中国农学通报, 2019, 35(30): 119-123.
|
[23] |
谷超. 红枫湖疏浚底泥中重金属的植物修复研究[D]. 贵阳: 贵州师范大学, 2015.
|
[24] |
李玉双, 孙丽娜, 孙铁珩, 等. 超富集植物叶用红菾菜 (Beta vulgaris var.cicla L.) 及其对 Cd 的富集特征[J]. 农业环境科学学报, 2007(4): 1386-1389.
|
[25] |
杨姝, 李元, 毕玉芬, 等. 紫花苜蓿对 Cd 胁迫的响应及品种差异研究进展[J]. 农业环境科学学报, 2017, 36(8): 1453-1461.
|
[26] |
王新, 贾永锋. 紫花苜蓿对土壤重金属富集及污染修复的潜力[J]. 土壤通报, 2009, 40(4): 932-935.
|
[27] |
谷超, 梁隆超, 陈卓. 4 种牧草植物对红枫湖底泥中重金属污染的植物修复研究[J]. 环境工程, 2015, 33(7): 148-151.
|