上海大学学报(自然科学版) ›› 2020, Vol. 26 ›› Issue (4): 491-505.doi: 10.12066/j.issn.1007-2861.2245
• 特邀综述 • 下一篇
许振民, 施利毅
收稿日期:
2020-07-05
出版日期:
2020-08-30
发布日期:
2020-09-03
基金资助:
XU Zhenmin, SHI Liyi
Received:
2020-07-05
Online:
2020-08-30
Published:
2020-09-03
摘要:
重金属污染的治理是环境问题的重点和难点。光催化技术为重金属的去除提供了一条绿色、可持续的途径。二氧化钛由于独特的光、电化学性能,被视为最适合的光催化剂。然而,由于带隙大、载流子复合速率高等缺陷,限制了其在可见光和自然太阳光下的应用。全面总结了二氧化钛在水体中重金属去除的最新进展,分析了表面修饰、金属和非金属掺杂、固载化、半导体复合等改性技术对重金属去除效率的影响,并对反应机理进行了讨论。最后,对光催化去除重金属的研究现状和存在的问题进行了评述。
中图分类号:
许振民, 施利毅. 光催化去除水体中重金属离子的研究进展[J]. 上海大学学报(自然科学版), 2020, 26(4): 491-505.
XU Zhenmin, SHI Liyi. Review on photocatalytic removal of heavy metals from water[J]. Journal of Shanghai University(Natural Science Edition), 2020, 26(4): 491-505.
[1] |
Ali M, Assirey E A, Abdel S M, et al. Low temperature-calcined TiO$_{2}$ for visible light assisted decontamination of 4-nitrophenol and hexavalent chromium from wastewater[J]. Scientific Reports, 2019,9(1):19354-19363.
doi: 10.1038/s41598-019-55912-2 pmid: 31852968 |
[2] |
Bi J, Huang X, Wang J, et al. Oil-phase cyclic magnetic adsorption to synthesize Fe$_{3}$O$_{4}$@C@TiO$_{2}$-nanotube composites for simultaneous removal of Pb(II) and Rhodamine B[J]. Chemical Engineering Journal, 2019,366(15):50-61.
doi: 10.1016/j.cej.2019.02.017 |
[3] |
Li S, Cai J, Wu X, et al. TiO$_{2}$@Pt@CeO$_{2}$ nanocomposite as a bifunctional catalyst for enhancing photo-reduction of Cr (VI) and photo-oxidation of benzyl alcohol[J]. Journal of Hazardous Materials, 2018,346(15):52-61.
doi: 10.1016/j.jhazmat.2017.12.001 |
[4] |
Wang H, Gao Q, Li H, et al. Hydrous titania nanosheets constructed hierarchical hollow microspheres as a highly efficient dual-use decontaminant for elimination of heavy metal ions and organic pollutants[J]. Chemical Engineering Journal, 2020,381(1):122638-122642.
doi: 10.1016/j.cej.2019.122638 |
[5] |
Chen D M, Sun C X, Liu C S, et al. Stable layered semiconductive Cu(I)-Organic framework for efficient visible-light-driven Cr(VI) reduction and H$_{2}$ evolution[J]. Inorganic Chem, 2018,57(13):7975-7981.
doi: 10.1021/acs.inorgchem.8b01137 |
[6] |
Chen S, Za J, Yang B, et al. Descriptor design in the computational screening of Ni-based catalysts with balanced activity and stability for dry reforming of methane reaction[J]. ACS Catalysis, 2020,10(5):3074-3083.
doi: 10.1021/acscatal.9b04429 |
[7] |
Chen W B, Yang Z F, Xie Z, et al. Benzothiadiazole functionalized D—A type covalent organic frameworks for effective photocatalytic reduction of aqueous chromium(VI)[J]. Journal of Materials Chemistry A, 2019,7(3):998-1004.
doi: 10.1039/C8TA10046B |
[8] |
Du X D, Yi X H, Wang P, et al. Robust photocatalytic reduction of Cr(VI) on UiO-66-NH$_{2}$(Zr/Hf) metal-organic framework membrane under sunlight irradiation[J]. Chemical Engineering Journal, 2019,356(15):393-399.
doi: 10.1016/j.cej.2018.09.084 |
[9] |
Duresa L W, Kuo D H, Ahmed K E, et al. Highly enhanced photocatalytic Cr(VI) reduction using In-doped Zn(O,S) nanoparticles[J]. New Journal of Chemistry, 2019,43(22):8746-8754.
doi: 10.1039/C9NJ01511F |
[10] |
Lei Z D, Xue Y C, Chen W Q, et al. The influence of carbon nitride nanosheets doping on the crystalline formation of MIL-88B(Fe) and the photocatalytic activities[J]. Small, 2018,14(35):1802045-1802053.
doi: 10.1002/smll.201802045 |
[11] |
Li H, Deng F, Zheng Y, et al. Visible-light-driven Z-scheme rGO/Bi$_{2}$S$_{3}$—BiOBr heterojunctions with tunable exposed BiOBr (102) facets for efficient synchronous photocatalytic degradation of 2-nitrophenol and Cr(VI) reduction[J]. Environmental Science: Nano, 2019,6(12):3670-3683.
doi: 10.1039/C9EN00957D |
[12] |
Liu J M, Ye Y, Sun X D, et al. A multifunctional Zr(IV)-based metal-organic framework for highly efficient elimination of Cr(VI) from the aqueous phase[J]. Journal of Materials Chemistry A, 2019,7(28):16833-16841.
doi: 10.1039/C9TA04026A |
[13] |
Mei Q, Zhang F, Wang N, et al. TiO$_{2}$/Fe$_{2}$O$_{3}$ heterostructures with enhanced photocatalytic reduction of Cr(VI) under visible light irradiation[J]. RSC Advances, 2019,9(39):22764-22771.
doi: 10.1039/C9RA03531A |
[14] |
Qiao X Q, Zhang Z W, Li Q H, et al. In situ synjournal of n-n Bi$_{2}$MoO$_{6}$ & Bi$_{2}$S$_{3}$ heterojunctions for highly efficient photocatalytic removal of Cr(VI)[J]. Journal of Materials Chemistry A, 2018,6(45):22580-22589.
doi: 10.1039/C8TA08294D |
[15] |
Ren Z, Liu X, Zhuge Z, et al. MoSe$_{2}$/ZnO/ZnSe hybrids for efficient Cr(VI) reduction under visible light irradiation[J]. Chinese Journal of Catalysis, 2020,41(1):180-187.
doi: 10.1016/S1872-2067(19)63484-4 |
[16] |
Sultana S, Mansingh S, Parida K M. Rational design of light induced self-healed Fe based oxygen vacancy rich CeO$_{2}$ (CeO$_{2}$NS-FeOOH/Fe$_{2}$O$_{3})$ nanostructure materials for photocatalytic water oxidation and Cr(VI) reduction[J]. Journal of Materials Chemistry A, 2018,6(24):11377-11389.
doi: 10.1039/C8TA02539H |
[17] |
Wang X S, Chen C H, Ichihara F, et al. Integration of adsorption and photosensitivity capabilities into a cationic multivariate metal-organic framework for enhanced visible-light photoreduction reaction[J]. Applied Catalysis B: Environmental, 2019,253(15):323-330.
doi: 10.1016/j.apcatb.2019.04.074 |
[18] |
Wei W, Zhang Z, You G, et al. Preparation of recyclable MoO$_{3}$ nanosheets for visible-light driven photocatalytic reduction of Cr(VI)[J]. RSC Advances, 2019,9(49):28768-28774.
doi: 10.1039/C9RA05644K |
[19] |
Wu H H, Chang C W, Lu D, et al. Synergistic effect of hydrochloric acid and phytic acid doping on polyaniline-coupled g-C$_{3}$N$_{4}$ nanosheets for photocatalytic Cr(VI) reduction and dye degradation[J]. ACS Appl Mater Interfaces, 2019,11(39):35702-35712.
doi: 10.1021/acsami.9b10555 pmid: 31532604 |
[20] |
Yang H, Jiang L, Wang W, et al. One-pot synjournal of CdS/metal-organic framework aerogel composites for efficient visible photocatalytic reduction of aqueous Cr(VI)[J]. RSC Advances, 2019,9(64):37594-37597.
doi: 10.1039/C9RA08339A |
[21] |
Yu Y, Yang X, Zhao Y, et al. Engineering the band gap states of the rutile TiO$_{2}$ (110) surface by modulating the active heteroatom[J]. Angew Chem: Int Ed, 2018,57(28):8550-8554.
doi: 10.1002/anie.v57.28 |
[22] | Zhang H, Li P, Wang Z, et al. Sustainable disposal of Cr(VI): adsorption-reduction strategy for treating textile wastewaters with amino-functionalized boehmite hazardous solid wastes[J]. ACS Sustainable Chemistry & Engineering, 2018,6(5):6811-6819. |
[23] |
Zhu C, Liu F, Song L, et al. Magnetic Fe$_{3}$O$_{4}$@polyaniline nanocomposites with a tunable core-shell structure for ultrafast microwave-energy-driven reduction of Cr(VI)[J]. Environmental Science: Nano, 2018,5(2):487-496.
doi: 10.1039/C7EN01075C |
[24] |
Raja A, Rajase P, Selva K, et al. Efficient photoreduction of hexavalent chromium using the reduced graphene Oxide-Sm$_{2}$MoO$_{6}$-TiO$_{2}$ catalyst under visible light illumination[J]. ACS Omega, 2020,5(12):6414-6422.
doi: 10.1021/acsomega.9b03923 pmid: 32258876 |
[25] | Vellaichamy B, Periakaruppan P, Nagulan B. Reduction of Cr(VI) from wastewater using a novel in situ-synthesized PANI/MnO$_{2}$/TiO$_{2}$ nanocomposite: renewable, selective, stable, and synergistic catalysis[J]. ACS Sustainable Chemistry & Engineering, 2017,5(10):9313-9324. |
[26] |
Wang D, Xu Y, Jing L, et al. In situ construction efficient visible-light-driven three-dimensional Polypyrrole/Zn$_{3}$In$_{2}$S$_{6}$ nanoflower to systematically explore the photoreduction of Cr(VI): performance, factors and mechanism[J]. Journal of Hazard Mater, 2020,384(15):121480-121489.
doi: 10.1016/j.jhazmat.2019.121480 |
[27] |
Ghafoor S, Hussain S Z, Waseem S, et al. Photo-reduction of heavy metal ions and photo-disinfection of pathogenic bacteria under simulated solar light using photosensitized TiO$_{2}$ nanofibers[J]. RSC Advances, 2018,8(36):20354-20362.
doi: 10.1039/C8RA01237G |
[28] |
Kanakaraju D, Rusydah N, Lim Y C, et al. Concurrent removal of Cr$^{3+}$, Cu(II), and Pb(II) ions from water by multifunctional TiO$_{2}$/Alg/FeNPs beads[J]. Sustainable Chemistry and Pharmacy, 2019,14:100176-100188.
doi: 10.1016/j.scp.2019.100176 |
[29] |
Luo Z, Qu L, Jia J, et al. TiO$_{2}$ /EDTA-rich carbon composites: synjournal, characterization and visible-light-driven photocatalytic reduction of Cr(VI)[J]. Chinese Chemical Letters, 2018,29(3):547-550.
doi: 10.1016/j.cclet.2017.09.025 |
[30] |
Duan L, Liu H, Muhammad Y, et al. Photo-mediated co-loading of highly dispersed MnO$_x$-Pt on g-C$_{3}$N$_{4}$ boosts the ambient catalytic oxidation of formaldehyde[J]. Nanoscale, 2019,11:8160-8169.
doi: 10.1039/c8nr08731h pmid: 30723852 |
[31] |
Zhang H, Shi L, Zhao Y, et al. A simple method to enhance the lifetime of Ni-rich cathode by using low-temperature dehydratable molecular sieve as water scavenger[J]. Journal of Power Sources, 2019,435:226773-226779.
doi: 10.1016/j.jpowsour.2019.226773 |
[32] |
Li Y, Bian Y, Qin H, et al. Photocatalytic reduction behavior of hexavalent chromium on hydroxyl modified titanium dioxide[J]. Applied Catalysis B: Environmental, 2017,206(5):293-299.
doi: 10.1016/j.apcatb.2017.01.044 |
[33] |
Deng X, Chen Y, Wen J, et al. Polyaniline-TiO$_{2}$ composite photocatalysts for light-driven hexavalent chromium ions reduction[J]. Science Bulletin, 2020,65(2):105-112.
doi: 10.1016/j.scib.2019.10.020 |
[34] |
Hosseini F, Mohebbi S. High efficient photocatalytic reduction of aqueous Zn$^{2+}$, Pb$^{2+}$ and Cu$^{2+}$ ions using modified titanium dioxide nanoparticles with amino acids[J]. Journal of Industrial and Engineering Chemistry, 2020,85:190-195.
doi: 10.1016/j.jiec.2020.01.040 |
[35] | Zhen M X, Ru Z, Yao C, et al. Ordered mesoporous Fe/TiO$_{2}$ with light enhanced photo-Fenton activity[J]. Chinese Journal of Catalysis, 2019,40:631-637. |
[36] |
Kara F, Kurban M, Coskun B, et al. Evaluation of electronic transport and optical response of two-dimensional Fe-doped TiO$_{2}$ thin films for photodetector applications[J]. Optik, 2020,210:164605-164612.
doi: 10.1016/j.ijleo.2020.164605 |
[37] |
Ghafoor S, Inayat A, Aftab F, et al. TiO$_{2}$ nanofibers embedded with g-C$_{3}$N$_{4}$ nanosheets and decorated with Ag nanoparticles as Z-scheme photocatalysts for environmental remediation[J]. Journal of Environmental Chemical Engineering, 2019,7(6):103452-103462.
doi: 10.1016/j.jece.2019.103452 |
[38] |
Liang C, Niu C G, Zhang L, et al. Construction of 2-D heterojunction system with enhanced photocatalytic performance: plasmonic Bi and reduced graphene oxide co-modified Bi$_{5}$O$_{7}$I with high-speed charge transfer channels[J]. Journal of Hazard Mater, 2019,361:245-258.
doi: 10.1016/j.jhazmat.2018.08.099 |
[39] |
Liu S X. Removal of copper (VI) from aqueous solution by Ag/TiO$_{2}$ photocatalysis[J]. Bulletin of Environmental Contamination and Toxicology, 2005,74(4):706-14.
pmid: 16094885 |
[40] |
Ravishankar T N, Vaz M O, Ramakrishnappa T, et al. Ionic liquid assisted hydrothermal syntheses of Au doped TiO$_{2}$ NPs for efficient visible-light photocatalytic hydrogen production from water, electrochemical detection and photochemical detoxification of hexavalent chromium (Cr(VI))[J]. RSC Advances, 2017,7(68):43233-43244.
doi: 10.1039/C7RA04944G |
[41] |
Misra M, Chowdhury S R, Singh N, et al. TiO$_{2}$@Au@CoMn$_{2}$O$_{4}$ core-shell nanorods for photo-electrochemical and photocatalytic activity for decomposition of toxic organic compounds and photo reduction of Cr(VI) ion[J]. Journal of Alloys and Compounds, 2020,824:153861-153871.
doi: 10.1016/j.jallcom.2020.153861 |
[42] |
Wang S, Xie Y, Cheng W, et al. Efficient photocatalytic removal of aqueous Cr(VI) by N-F-Al tri-doped TiO$_{2}$[J]. Korean Journal of Chemical Engineering, 2017,34(9):2507-2513.
doi: 10.1007/s11814-017-0161-7 |
[43] |
Tanaka A, Nakanishi K, Hamada R, et al. Simultaneous and stoichiometric water oxidation and Cr(VI) reduction in aqueous suspensions of functionalized plasmonic photocatalyst Au/TiO$_{2}$-Pt under irradiation of green light[J]. ACS Catalysis, 2013,3(8):1886-1891.
doi: 10.1021/cs400433r |
[44] |
Udaya B, Lakshmana N, Shankar M V, et al. One-pot synjournal of Cu-TiO$_{2}$/CuO nanocomposite: application to photocatalysis for enhanced H$_{2}$ production, dye degradation & detoxification of Cr (VI)[J]. International Journal of Hydrogen Energy, 2020,45(13):7813-7828.
doi: 10.1016/j.ijhydene.2019.10.081 |
[45] |
Zhou L, Wang L, Lei J, et al. Fabrication of TiO$_{2}$/Co-g-C$_{3}$N$_{4}$ heterojunction catalyst and its photocatalytic performance[J]. Catalysis Communications, 2017,89(10):125-128.
doi: 10.1016/j.catcom.2016.09.022 |
[46] |
Jiang W, Hu X, Yaseen M, et al. Template/surfactant free and UV light irradiation assisted fabrication of Mn-Co oxides composite nanorings: structure and synjournal mechanism[J]. Progress in Natural Science: Materials International, 2019,29:163-169.
doi: 10.1016/j.pnsc.2019.02.002 |
[47] |
Luo D, Yan R, Fu C, et al. Cu(0)/TiO$_{2}$ composite byproduct from photo-reduction of acidic Cu-containing wastewater and its reuse as a catalyst[J]. Journal of Water Process Engineering, 2019,32:100958-100969
doi: 10.1016/j.jwpe.2019.100958 |
[48] |
Ali I, Kim J O. Visible-light-assisted photocatalytic activity of bismuth-TiO$_{2}$ nanotube composites for chromium reduction and dye degradation[J]. Chemosphere, 2018,207:285-292.
pmid: 29803877 |
[49] |
Murakami N, Chiyoya T, Tsubota T, et al. Switching redox site of photocatalytic reaction on titanium(IV) oxide particles modified with transition-metal ion controlled by irradiation wavelength[J]. Applied Catalysis A: General, 2008,348(1):148-152.
doi: 10.1016/j.apcata.2008.06.040 |
[41] | Yan R, Luo D, Fu C, et al. Simultaneous removal of Cu(II) and Cr(VI) ions from wastewater by photoreduction with TiO$_{2}$-ZrO$_{2}$[J]. Journal of Water Process Engineering, 2020,33:101052-101063. |
[51] |
Zabihi S A, Koush S, Pishna M, et al. Synjournal of cellulose acetate/chitosan/SWCNT/ Fe$_{3}$O$_{4}$/TiO$_{2}$ composite nanofibers for the removal of Cr(VI), As(V), Methylene blue and Congo red from aqueous solutions[J]. International Journal of Biol Macromol, 2019,140:1296-1304.
doi: 10.1016/j.ijbiomac.2019.08.214 |
[52] |
Qiu J, Li M, Xu J, et al. Bismuth sulfide bridged hierarchical Bi$_{2}$S$_{3}$/BiOCl@ZnIn$_{2}$S$_{4}$ for efficient photocatalytic Cr(VI) reduction[J]. Journal of Hazard Mater, 2020,389(5):121858-121863.
doi: 10.1016/j.jhazmat.2019.121858 |
[53] |
Chen X, Sun H, Zhang J, et al. Synjournal of visible light responsive iodine-doped mesoporous TiO$_{2}$ by using biological renewable lignin as template for degradation of toxic organic pollutants[J]. Applied Catalysis B: Environmental, 2019,252(5):152-163.
doi: 10.1016/j.apcatb.2019.04.034 |
[54] |
Hamdy M S. One-step synjournal of M-doped TiO$_{2}$ nanoparticles in TUD-1 (M-TiO$_{2}$-TUD-1, M=Cr or V) and their photocatalytic performance under visible light irradiation[J]. Journal of Molecular Catalysis A: Chemical, 2014,393(1):39-46.
doi: 10.1016/j.molcata.2014.05.039 |
[55] |
Liu B, Liu X, Li L, et al. ZnIn$_{2}$S$_{4}$ flowerlike microspheres embedded with carbon quantum dots for efficient photocatalytic reduction of Cr(VI)[J]. Chinese Journal of Catalysis, 2018,39(12):1901-1909.
doi: 10.1016/S1872-2067(18)63137-7 |
[56] |
Wang Y, Rao L, Wang P, et al. Photocatalytic activity of N-TiO$_{2}$/O-doped N vacancy g-C$_{3}$N$_{4}$ and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment[J]. Applied Catalysis B: Environmental, 2020,262:118308-118338.
doi: 10.1016/j.apcatb.2019.118308 |
[57] |
Xu M, Chen Y, Qin J, et al. Unveiling the role of defects on oxygen activation and photodegradation of organic pollutants[J]. Environment Science & Technology, 2018,52(23):13879-13886.
doi: 10.1021/acs.est.8b03558 |
[58] |
Bai X, Jia J, Du Y, et al. Multi-level trapped electrons system in enhancing photocatalytic activity of TiO$_{2 }$ nanosheets for simultaneous reduction of Cr(VI) and RhB degradation[J]. Applied Surface Science, 2020,503(15):144298-144307.
doi: 10.1016/j.apsusc.2019.144298 |
[59] |
Yang Y, Wang G, Deng Q, et al. Enhanced photocatalytic activity of hierarchical structure TiO$_{2}$ hollow spheres with reactive (001) facets for the removal of toxic heavy metal Cr(VI)[J]. RSC Advances, 2014,4(65):34577-34583.
doi: 10.1039/c4ra04787g |
[60] |
Han L, Zhong Y, Lei K, et al. Carbon dot-SnS$_{2}$ heterojunction photocatalyst for photoreduction of Cr(VI) under visible light: a combined experimental and first-principles DFT study[J]. The Journal of Physical Chemistry C, 2019,123(4):2398-2409.
doi: 10.1021/acs.jpcc.8b10059 |
[61] |
Zhang Y, Zhao Y, Xu Z, et al. Carbon quantum dots implanted CdS nanosheets: efficient visible-light-driven photocatalytic reduction of Cr(VI) under saline conditions[J]. Applied Catalysis B: Environmental, 2020,262:118306-118317.
doi: 10.1016/j.apcatb.2019.118306 |
[62] |
Shi C, Qi H, Sun Z, et al. Carbon dot-sensitized urchin-like Ti$^{3+}$ self-doped TiO$_{2}$ photocatalysts with enhanced photoredox ability for highly efficient removal of Cr(VI) and RhB[J]. Journal of Materials Chemistry C, 2020,8(7):2238-2247.
doi: 10.1039/C9TC05513D |
[63] |
Zhang Y, Xu M, Li H, et al. The enhanced photoreduction of Cr(VI) to Cr$^{3+}$ using carbon dots coupled TiO$_{2}$ mesocrystals[J]. Applied Catalysis B: Environmental, 2018,226(15):213-219.
doi: 10.1016/j.apcatb.2017.12.053 |
[64] |
Wu Y, Chen G, Wang Z, et al. In situ constructed Ag/C conductive network enhancing the C-rate performance of Si based anode[J]. Journal of Energy Storage, 2018,17:102-108.
doi: 10.1016/j.est.2018.02.016 |
[65] |
Zheng H, Wang Z, Shi L, et al. Enhanced thermal stability and lithium ion conductivity of polyethylene separator by coating colloidal SiO$_{2}$ nanoparticles with porous shell[J]. Journal of Colloid and Interface Science, 2019,554:29-38.
doi: 10.1016/j.jcis.2019.06.102 pmid: 31276959 |
[66] |
Gomaa H, Shenashen M A, Yamaguchi H, et al. Highly-efficient removal of AsV, Pb$^{2+}$, Fe$^{3+}$, and Al$^{3+}$ pollutants from water using hierarchical, microscopic TiO$_{2}$ and TiOF$_{2}$ adsorbents through batch and fixed-bed columnar techniques[J]. Journal of Cleaner Production, 2018,182:910-925.
doi: 10.1016/j.jclepro.2018.02.063 |
[67] |
Kanakaraju D, Rusydah N, Chin L Y, et al. Concurrent removal of Cr(III), Cu(II), and Pb(II) ions from water by multifunctional TiO$_{2}$/Alg/FeNPs beads[J]. Sustainable Chemistry and Pharmacy, 2019,14:100176-100185.
doi: 10.1016/j.scp.2019.100176 |
[68] |
Yong W, Chang P, Erika P O, et al. Cr(VI) adsorption on activated carbon: mechanisms, modeling and limitations in water treatment[J]. Journal of Environmental Chemical Engineering, 2020,8:104031-104038.
doi: 10.1016/j.jece.2020.104031 |
[69] |
Abbas K K, Ghaban A A. Enhanced solar light photoreduction of innovative TiO$_{2}$ nanospherical shell by reduced graphene oxide for removal silver ions from aqueous media[J]. Journal of Environmental Chemical Engineering, 2019,7(3):103168-103181.
doi: 10.1016/j.jece.2019.103168 |
[70] |
Khamb D, Srirattanl S, Tang I M, et al. TiO$_{2}$-rGO nanocomposite as a photo catalyst for the reduction of Cr(VI)[J]. Materials Research Bulletin, 2018,107:236-241.
doi: 10.1016/j.materresbull.2018.07.002 |
[71] |
Wang G, Fan W, Li Q, et al. Enhanced photocatalytic New Coccine degradation and Pb(II) reduction over graphene oxide-TiO$_{2}$ composite in the presence of aspartic acid-beta- cyclodextrin[J]. Chemosphere, 2019,216:707-714.
doi: 10.1016/j.chemosphere.2018.10.199 pmid: 30391892 |
[72] |
Yan X, Ye K, Zhang T, et al. Formation of three-dimensionally ordered macroporous TiO$_2$@nanosheet SnS$_2$ heterojunctions for exceptional visible-light driven photocatalytic activity[J]. New Journal of Chemistry, 2017,41(16):8482-8489.
doi: 10.1039/C7NJ01421J |
[73] |
Zhang H, Wang X, Li N, et al. Synjournal and characterization of TiO$_{2}$/graphene oxide nanocomposites for photoreduction of heavy metal ions in reverse osmosis concentrate[J]. RSC Advances, 2018,8(60):34241-34251.
doi: 10.1039/C8RA06681G |
[74] |
Vajedi F, Dehg H. The characterization of TiO$_{2}$-reduced graphene oxide nanocomposites and their performance in electrochemical determination for removing heavy metals ions of cadmium(II), lead(II) and copper(II)[J]. Materials Science and Engineering: B, 2019,243:189-198.
doi: 10.1016/j.mseb.2019.04.009 |
[75] |
Liu H, Liu X Y, Yang W W, et al. Photocatalytic dehydrogenation of formic acid promoted by a superior PdAg@g-C$_{3}$N$_{4}$ Mott-Schottky heterojunction[J]. Journal of Materials Chemistry C, 2019,7:2022-2026.
doi: 10.1039/C8TC06010J |
[76] |
Wang Y J, Bao S Y, Liu Y Q, et al. Efficient photocatalytic reduction of Cr(VI) in aqueous solution over CoS$_{2}$/g-C$_{3}$N$_{4}$-rGO nanocomposites under visible light[J]. Applied Surface Science, 2020,510:145495-145505.
doi: 10.1016/j.apsusc.2020.145495 |
[77] |
Bao S Y, Liu H, Liu Y Q, et al. Amino-functionalized graphene oxide-supported networked Pd-Ag nanowires as highly effificient catalyst for reducing Cr(VI) in industrial efflfluent by formic acid[J]. Chemosphere, 2020,257:127245-127253.
doi: 10.1016/j.chemosphere.2020.127245 pmid: 32505944 |
[78] |
Bao S Y, Yang W W, Wang Y J, et al. PEI grafted amino-functionalized graphene oxide nanosheets for ultrafast and high selectivity removal of Cr(VI) from aqueous solutions by adsorption combined with reduction: behaviors and mechanisms[J]. Chemical Engineering Journal, 2020,399:125762-125773.
doi: 10.1016/j.cej.2020.125762 |
[79] |
Bao S Y, Yang W W, Wang Y J, et al. One-pot synjournal of magnetic graphene oxide composites as an efficient and recoverable adsorbent for Cd(II) and Pb(II) removal from aqueous solution[J]. Journal of Hazardous Materials, 2020,381:120914-120926.
doi: 10.1016/j.jhazmat.2019.120914 pmid: 31351227 |
[80] |
Wang X, Sun M, Murugananthan M, et al. Electrochemically self-doped WO$_{3}$/TiO$_{2}$ nanotubes for photocatalytic degradation of volatile organic compounds[J]. Applied Catalysis B: Environmental, 2020,260:118205-118216.
doi: 10.1016/j.apcatb.2019.118205 |
[81] |
Abidi M, Assadi A, Bouzaza A, et al. Photocatalytic indoor/outdoor air treatment and bacterial inactivation on Cu$_{x}$O/TiO$_{2}$ prepared by HiPIMS on polyester cloth under low intensity visible light[J]. Applied Catalysis B: Environmental, 2019,259:118074-118055
doi: 10.1016/j.apcatb.2019.118074 |
[82] |
Zhang W, Li G, Liu H, et al. Micro/nano-bubble assisted synjournal of Au/TiO$_{2}$@CNTs composite photocatalyst for photocatalytic degradation of gaseous styrene and its enhanced catalytic mechanism[J]. Environmental Science: Nano, 2019,6:948-958.
doi: 10.1039/C8EN01375F |
[83] | Wang Z, Xie X, Wang X, et al. Difference of photodegradation characteristics between single and mixed VOC pollutants under simulated sunlight irradiation[J]. Journal of Photochemistry & Photobiology A: Chemistry, 2019,384:112029-112039. |
[84] |
You S Z, Hu Y, Liu X C, et al. Synergetic removal of Pb(II) and dibutyl phthalate mixed pollutants on Bi$_{2}$O$_{3}$-TiO$_{2 }$composite photocatalyst under visible light[J]. Applied Catalysis B: Environmental, 2018,232(15):288-298.
doi: 10.1016/j.apcatb.2018.03.025 |
[85] |
Yuan R, Yue C, Qiu J, et al. Highly efficient sunlight-driven reduction of Cr(VI) by TiO$_{2}$@NH$_{2}$-MIL-88B(Fe) heterostructures under neutral conditions[J]. Applied Catalysis B: Environmental, 2019,251(15):229-239.
doi: 10.1016/j.apcatb.2019.03.068 |
[86] |
Du J, Ma S, Liu H, et al. Uncovering the mechanism of novel AgInS$_{2}$ nanosheets/TiO$_{2}$ nanobelts composites for photocatalytic remediation of combined pollution[J]. Applied Catalysis B: Environmental, 2019,259(15):118062-118077.
doi: 10.1016/j.apcatb.2019.118062 |
[87] |
Bi J J, Huang X, Wang J K, et al. Oil-phase cyclic magnetic adsorption to synthesize Fe$_{3}$O$_{4}$@C@TiO$_{2}$-nanotube composites for simultaneous removal of Pb(II) and Rhodamine B[J]. Chemical Engineering Journal, 2019,366:50-61.
doi: 10.1016/j.cej.2019.02.017 |
[88] |
Zabihisahebi A, Koushkbaghis S, Pishnamazi M, et al. Synjournal of cellulose acetate/chitosan/SWCNT/Fe$_{3}$O$_{4}$/TiO$_{2}$ composite nanofifibers for the removal of Cr(VI), As(V), Methylene blue and Congo red from aqueous solutions[J]. International Journal of Biological Macromolecules, 2019,140:1296-1304.
doi: 10.1016/j.ijbiomac.2019.08.214 pmid: 31465804 |
[1] | 李琦, 罗志刚, 陈大勇, 黄守双, 胡张军, 陈志文. 氧化锌/石墨烯复合材料的制备及其光催化性能[J]. 上海大学学报(自然科学版), 2020, 26(3): 425-432. |
[2] | 贾少晋, 鲍沂沂, 李记伟, 陈俊聿, 吴伟, 杨少华. 双连续相微乳液制备纳米 TiO2/P(MMA/BMA)复合材料与表征[J]. 上海大学学报(自然科学版), 2020, 26(1): 143-152. |
[3] | 石正驰, 何池全, 熊鹏鹏, 程雪. 菌渣对蓖麻修复镉和锌复合污染土壤的影响[J]. 上海大学学报(自然科学版), 2018, 24(6): 931-937. |
[4] | 顾静萍, 谢有桃, 黄利平, 贺延昌, 赵君, 郑学斌, 李红, 孙晋良. 微/纳多级结构TiO2涂层的制备及生物学性能[J]. 上海大学学报(自然科学版), 2018, 24(1): 44-55. |
[5] | 张云龙, 浦娴娟, 程伶俐, 蒋永, 丁国际, 焦正. 真空加热和电子束辐照改性处理g-C3N4光催化剂[J]. 上海大学学报(自然科学版), 2017, 23(3): 452-463. |
[6] | 张纯淳1,2, 何池全1. 上海市某区域PM2.5及其重金属对居民健康的影响[J]. 上海大学学报(自然科学版), 2016, 22(6): 784-792. |
[7] | 阮秀秀, 左建伟, 陈桦, 徐楠楠, 杨二伟. 有机体基锌铁双金属催化剂的溶胶凝胶法制备及对染料废水的可见光催化降解[J]. 上海大学学报(自然科学版), 2016, 22(4): 515-523. |
[8] | 李寅寅1,2, 何池全1. 上海某化工区土壤重金属污染情况的调查与评价[J]. 上海大学学报(自然科学版), 2016, 22(2): 151-158. |
[9] | 阮仲英, 王宇佳, 王彬, 程伶俐, 丁楠, 焦正. 大比表面积TiO2 纳米球的合成及其可见光降解Cr(VI) 和双酚A的协同作用机理[J]. 上海大学学报(自然科学版), 2015, 21(4): 490-502. |
[10] | 阮秀秀, 徐楠楠, 林昱, 钱光人. 电镀废水中有机多元LDHs 的原位合成[J]. 上海大学学报(自然科学版), 2013, 19(4): 358-362. |
[11] | 陆强,刘引烽,李煜光,杨呈夏,冉明浩,杨红,顾莹,夏义本. 聚丙烯腈/多金属复合氧化铁可见光催化光解水的性能[J]. 上海大学学报(自然科学版), 2012, 18(3): 317-322. |
[12] | 王艳丽 谈顺 吴秋霞 王佳. 二氧化钛纳米管作为肿瘤药物载体系统的体外负载及释放[J]. 上海大学学报(自然科学版), 2010, 16(6): 582-586. |
[13] | 沈嘉年;刘东;万斌;李谋成;钟祥玉. 过渡金属掺杂的多孔二氧化钛薄膜电极光催化氧化技术[J]. 上海大学学报(自然科学版), 2008, 14(5): 475-480 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||