上海大学学报(自然科学版)

• 通信与信息工程 • 上一篇    下一篇

一个含有4个平均值的Gauss型函数方程

范莉霞1,2,李世杰3,赵灵芝1   

  1. 1.上海大学 理学院,上海 200444; 2.嘉兴学院 数学系,嘉兴 314001; 3.衢州市教育局教研室,衢州 324002
  • 收稿日期:2006-05-30 修回日期:1900-01-01 出版日期:2007-04-30 发布日期:2007-04-30
  • 通讯作者: 范莉霞

A Gauss Type Functional Equation with Four Means

FAN Li-xia1,2,LI Shi-jie3,ZHAO Ling-zhi1   

  1. 1. School of Sciences, Shanghai University, Shanghai 200444, China;2. Department of Mathematics, Jiaxing University, Jiaxing 314001, China;3. Department of Teaching Research, Quzhou Education Committee, Quzhou 324002, China
  • Received:2006-05-30 Revised:1900-01-01 Online:2007-04-30 Published:2007-04-30
  • Contact: FAN Li-xia

摘要: Gauss型函数方程是指与平均值相联系的一种函数方程.Gauss最早研究的是针对算术平均值 与几何平均值的函数方程,后来,Haruki和Rassias运用Gauss原理研究了针对算术平均数和 调和平均数的Gauss型函数方程;Toader研究了针对幂平均值的Gauss型函数方程;刘证研究 了针对几何平均数与调和平均数的Gauss型函数方程,但始终没有一个能针对这4个平均值的 统一的函数方程.该文在总结他们方法的基础上,研究了一个含有4个Φi(i=1,2,3,4 )平均值的Gauss型函数方程,并统一推广了针对算术平均值、几何平均值、调和平均值和幂平均值的相应结果.

关键词: Φi平均值, Gauss型函数方程, 加权

Abstract: A Gauss type functional equation is related to means. Gauss initially discussed a functional equation in terms of arithmetic mean and geometric mean. Haruki and Rassias studied a Gauss type functional equation with arithmetic mean and harmo nic mean using the Gaussian principle. Toader presented a Gauss type functional equation with power mean. Liu Zheng discussed a functional equation in terms of geometric mean and harmonic mean. However, none of these are associated with all the four means. This paper discusses a Gauss type functional equation having four Φi(i=1,2,3,4) means, and generalize the results of arithmetic mean, geometric mean, harmonic mean, and power mean.

Key words: weighted, Φi mean, Gauss funtional equation

中图分类号: