上海大学学报(自然科学版)

• 通信与信息工程 • 上一篇    下一篇

汽车安全碰撞问题的数学模型

侯磊1,3,仇璘2,3   

  1. 1.上海大学 理学院,上海 200444;2.上海交通大学 数学系,上海 200030;3.上海高校计算科学E-研究院,上海 200030
  • 收稿日期:2006-05-16 修回日期:1900-01-01 出版日期:2007-04-30 发布日期:2007-04-30
  • 通讯作者: 侯磊

Mathematical Model for Auto-Crash Safety

HOU Lei1,3,QIU Lin2,3   

  1. 1. School of Sciences, Shanghai University, Shanghai 200444, China;2. Department of Mathematics, Shanghai Jiaotong University, Shanghai 200030, China;3. E-Institutes of Shanghai Municipal Education Commission Shanghai 200030, China
  • Received:2006-05-16 Revised:1900-01-01 Online:2007-04-30 Published:2007-04-30
  • Contact: QIU Lin

摘要: 运用非线性数值计算方法摸拟冲击碰撞时粘滞弹塑性材料的应力场分布.发现其结果与P-T/T(Maxwell)应力微分方程相同,其冲击加速度数值解与EEVC实验吻合.由此而得到弹塑性复合材料的冲击碰撞应力场合理数值结果,并运用后估计算法对冲击碰撞大变形应力场初始阶段进行了模拟,对汽车安全技术被动保护装置的气流触发控制数学模型的建立提供了可靠依据.

关键词: 冲击碰撞, 弹塑性, 实验扰动参数, 数值摸拟, 微分方程, 自适应有限元

Abstract: This paper applys a non-linear numerical method to simulate the viscouselastic plastic deformation and its stress distribution. The resolution agrees with the theoretical results from the P-T/T stress PDE (Maxwell) equation. The resulting accele rations are confirmed by the European EEVC experimental solutions. Therefore the complex material stress distribution in large deformation is obtained. A post-estimate solver is used for sensitive pre-stage deformation when impact occurs. The study is useful for mathematical modeling of passive safety in automotive protection devices and air-flow triggering control.

Key words: adaptiv e FEA, differential equation, impact, numerical simulation, perturbation parameters, elastic-plastics

中图分类号: