上海大学学报(自然科学版) ›› 2015, Vol. 21 ›› Issue (5): 547-559.doi: 10.3969/j.issn.1007-2861.2014.01.037

• 通信与信息工程 • 上一篇    下一篇

9轴MEMS-IMU实时姿态估算算法

张金艺1,2,3, 徐德政2, 李若涵1, 陈兴秀1, 徐秦乐2   

  1. 1.上海大学 特种光纤与光接入网省部共建重点实验室, 上海 200444;
    2.上海大学 微电子中心, 上海 200444;
    3.上海大学 教育部新型显示与系统应用重点实验室, 上海 200444
  • 收稿日期:2014-01-02 出版日期:2015-10-30 发布日期:2015-10-30
  • 通讯作者: 张金艺(1965—), 男, 研究员, 博士生导师, 博士, 研究方向为通信类SoC设计与室内无线定位技术. E-mail:zhangjinyi@staff.shu.edu.cn
  • 基金资助:

    上海市教委重点学科建设资助项目(J50104); 上海市科委基金资助项目(08706201000, 08700741000)

9-axis MEMS-IMU real-time data fusion algorithm for attitude estimation

ZHANG Jin-yi1,2,3, XU De-zheng2, LI Ruo-han1,CHEN Xing-xiu1, XU Qin-le2   

  1. 1. Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200444, China;
    2. Microelectronic Research and Development Center, Shanghai University, Shanghai 200444, China;
    3. Key Laboratory of Advanced Displays and System Application, Ministry of Education, Shanghai University, Shanghai 200444, China
  • Received:2014-01-02 Online:2015-10-30 Published:2015-10-30

摘要: 随着对微机电系统-惯性测量单元(micro-electro-mechanical system-inertial measurement unit, MEMS-IMU)在室内定位、动态追踪等应用领域中的需求日益迫切, 使得具有高精度、低成本和实时性的MEMS-IMU模块设计成为研究热点. 针对MEMS-IMU的核心技术——姿态估算进行研究, 设计了一种基于四元数的9轴MEMS-IMU实时姿态估算算法. 该算法运用分解四元数算法处理加速度和磁感应强度数据, 计算出静态四元数; 通过角速度与四元数的微分关系估算动态四元数; 运用卡尔曼滤波融合动、静态四元数, 进而实现实时姿态估算. 针对分解四元数算法中存在的奇异值问题, 提出了转轴补偿方法对其修正, 以实现全姿态估算; 考虑动态情况下的非线性加速度分量对姿态估算精度的影响, 设计了R自适应卡尔曼滤波器, 以进一步提高姿态估算算法的精度. 验证结果表明, R自适应卡尔曼滤波器能够有效抑制加速度噪声, 提高姿态估算精度; 同时, 转轴补偿-分解四元数算法能够准确估算奇异值点的姿态信息, 并且计算时间仅为原“借角”补偿方法的50%左右, 有效提高了整体算法的实时性.

关键词: 分解四元数算法, 卡尔曼滤波, 奇异值补偿, 微机电系统-惯性测量单元, 姿态估算

Abstract: To meet urgent application demands in indoor location and motion tracking, studies on low-cost high-resolution and real-time micro-electro-mechanical system-inertial measurement unit (MEMS-IMU) have attracted much attention. This paper presents a quaternion-based data fusion algorithm for real-time attitude estimation, including factored quaternion algorithm (FQA) for static attitude estimation, and Kalman filtering fordata fusion. A singularity avoidance method, axis-exchanged compensation, is proposed to modify the FQA, allowing the algorithm to track at all attitudes. An R-adapted module is designed to adjust the Kalman gain, which effectively restrains noise due to dynamic nonlinear acceleration, and improves attitude estimation accuracy. Experimental results show that the R-adapted Kalman filter can accurately estimate attitudes in real-time. Additionally, FQA with an axis-exchanged method has good performance in estimating attitudes of singularity points, and the computational efficiency is higher than a previous method by 50%.

Key words: attitude estimation, factored quaternion algorithm (FQA), Kalman filter (KF), micro-electro-mechanical system-inertial measurement unit (MEMS-IMU), singularity compensation

中图分类号: