上海大学学报(自然科学版) ›› 2025, Vol. 31 ›› Issue (4): 691-703.doi: 10.12066/j.issn.1007-2861.2686

• 信息工程 • 上一篇    下一篇

基于YOLO模型的作业环境实时反光背心检测

朱硕, 王永芳, 李子萱, 陈伟   

  1. 上海大学 通信与信息工程学院, 上海 200444
  • 收稿日期:2024-12-12 出版日期:2025-08-31 发布日期:2025-09-16
  • 通讯作者: 王永芳(1973—),女,教授,博士,研究方向为计算机视觉和视频图像处理. E-mail:yfw@shu.edu.cn
  • 基金资助:
    国家自然科学面上基金资助项目(62275148)

Real-time reflective vest detection in operational environments based on YOLO

ZHU Shuo, WANG Yongfang, LI Zixuan, CHEN Wei   

  1. School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
  • Received:2024-12-12 Online:2025-08-31 Published:2025-09-16

摘要: 通过引入全局注意力机制(global attention mechanism,GAM),在YOLOv7模型的基础上提出了YOLOv7-GAM模型,增强了对关键区域的关注能力.通过引入多尺度训练方案,提高模型对小目标的感知性能,并设计了一种两阶段增强检测算法,能够有效缓解因遮挡、重叠和小目标问题引起的检测性能下降.在输入图像分辨率为640$\times$640的情况下,该方案的检测速度可满足实际生产环境中的实时性需求,且其性能优于相关的算法.

关键词: 目标检测, 反光背心, 深度学习, YOLO

Abstract: Based on the YOLOv7 model, the YOLOv7-globel attention mechanism (YOLO-GAM) model was proposed to enhance the model's focus on critical regions. Additionally, a multi-scale training scheme was introduced to improve the model's ability to detect small targets, and a two-stage enhanced detection algorithm was designed, which effectively mitigated the degradation of detection performance caused by occlusion, overlapping, and small targets. With an input image resolution of $640\times 640$, the scheme's detection speed could meet the real-time requirements of the actual production environment and outperform the related algorithms in terms of performance.

Key words: target detection, reflective vest, deep learning, YOLO

中图分类号: