上海大学学报(自然科学版) ›› 2024, Vol. 30 ›› Issue (3): 522-531.doi: 10.12066/j.issn.1007-2861.2479

• • 上一篇    下一篇

基于循环神经网络的 2-DOF 软体机械臂运动建模与控制

丁 卫, 郑 云, 钟宋义, 杨 扬   

  1. 上海大学 机电工程与自动化学院, 上海 200444
  • 出版日期:2024-06-30 发布日期:2024-07-09
  • 通讯作者: 杨 扬 (1986—), 男, 副教授, 博士, 研究方向为软体机器人. E-mail:yangyang shu@shu.edu.cn

Motion modeling and control of a 2-DOF soft manipulator based on a recurrent neural network

DING Wei, ZHENG Yun, ZHONG Songyi, YANG Yang   

  1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
  • Online:2024-06-30 Published:2024-07-09

摘要: 因现有软体机械臂材料刚度小、模量不稳定, 导致建模与控制难度大. 提出一种基于循环神经网络(recurrent neural network, RNN) 的方法, 用于二自由度(two-degree-of-freedom, 2-DOF) 软体机械臂的运动建模与控制. 使用动作捕捉仪采集不同气压、负载下的位置坐标,并将其导入门控循环单元 (gated recurrent unit, GRU) 神经网络模型进行训练. 当调节超参数至网络结构最优时, 测试集准确度可达 98.87%. 在此基础上, 构建气压与负载到末端位置的映射函数. 实验结果表明, 本方法可将机械臂的控制精度提升至 6∼8 mm, 显著降低了软体机器人的控制与建模难度.

关键词: 循环神经网络, 门控循环单元模型, 软体机械臂, 建模与控制

Abstract: To address the difficulty of modeling and control of existing soft manipulators due to their small material stiffness and unstable modulus, this study proposes a method based on a recurrent neural network (RNN) for the motion modeling of a two-degree-of-freedom (2-DOF) soft manipulator with control. A motion-capture instrument was used to collect the position coordinates under different pressures and loads, and the coordinates were imported into a gated recurrent unit (GRU) neural network model for training. The accuracy of the test set reached 98.87% when the hyperparameters were adjusted to the optimal network structure. Accordingly, a mapping function for the pressure and load at the end position was constructed. Experimental results showed that the proposed method could improve the control accuracy of the manipulator by approximately 6∼8 mm and significantly reduced the difficulty of control and modeling of a soft robot.

Key words: recurrent neural network (RNN), gated recurrent unit (GRU) model, soft manipulator, modeling and control

中图分类号: