上海大学学报(自然科学版) ›› 2019, Vol. 25 ›› Issue (4): 590-596.doi: 10.12066/j.issn.1007-2861.1948

• 研究论文 • 上一篇    下一篇

Ca$_{\textbf{0.5}}$Ba$_{\textbf{0.5}}$MnO$_{\textbf{3}}$多铁性的第一性原理

金山1, 靳锡联2, 焦正3, 孟醒1,2()   

  1. 1. 吉林大学 物理学院 新型电池物理与技术教育部重点实验室, 长春 130012
    2. 吉林大学 物理学院 超硬材料国家重点实验室, 长春 130012
    3. 上海大学 环境与化学工程学院, 上海 200444
  • 收稿日期:2017-05-26 出版日期:2019-08-30 发布日期:2019-09-04
  • 通讯作者: 孟醒 E-mail:mengxing@jlu.edu.cn

Homologous multiferroicity in Ca$_{\textbf{0.5}}$Ba$_{\textbf{0.5}}$MnO$_{\textbf{3}}$ from first-principle investigation

Shan JIN1, Xilian JIN2, Zheng JIAO3, Xing MENG1,2()   

  1. 1. Key Laboratory of Physics and Technology for Advanced Batteries under Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
    2. State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
    3. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
  • Received:2017-05-26 Online:2019-08-30 Published:2019-09-04
  • Contact: Xing MENG E-mail:mengxing@jlu.edu.cn

摘要:

利用第一性原理电子结构计算方法, 通过对 CaMnO$_{3}$, BaMnO$_{3}$的软声子模式分析, 构造出一种 Ca$_{0.5}$Ba$_{0.5}$MnO$_{3}$(CBMO)合金结构. 此合金可同时具有源于 Mn 原子的铁电(ferroelectric, FE) 性与铁磁(ferromagnetic, FM)性, 其中 G 型反铁磁(antiferromagnetic, AFM)构型下的 电极化强度为 6.70 $\mu $C/cm$^{2}$, 铁磁构型下的电极化强度为 23.214 $\mu $C/cm$^{2}$. 其产生的机制是半径较大的 Ba 原子可导致晶格发生应变, 产生有效负压, 减弱 CaMnO$_{3}$的反铁畸变(antiferrodistortive, AFD)模对铁电模的抑制, 进而诱导铁电极化. 此性质意味着这种材料在磁场的作用下, 由 G 型反铁磁构型转变为 铁磁构型时的电极化强度会发生显著变化. 基于第一性原理电子结构计算给出的不同磁结构总能, 进一步拟合出了海森堡模型的参数, 并针对其哈密顿量展开了有限温度下的 Monte-Carlo 模拟, 模拟出的奈尔温度为 70 K. 这些结果从理论层面提出了一种新型的、 源于相同原子的, 并可能提供有效磁电耦合的多铁材料, 并且可以为今后类似系统的相关实验提供理论参考.

关键词: 第一性原理, 多铁材料, 磁电耦合, 反铁畸变模, 铁电模

Abstract:

Using first-principle electronic structure calculations, a new alloy structure with Ca$_{0.5}$Ba$_{0.5}$MnO$_3$ (CBMO) stoichiometry is found, which possesses ferromagnetic (FM) and ferroelectric (FE) originating from Mn (6.70 $\mu $C/cm$^{2}$ in the G-type antiferromagnetic (AFM) structure and 23.214 $\mu $C/cm$^{2}$ in the FM structure). By applying a strong external magnetic field, FM properties can change dramatically, indicating a strong coupling between FM and FE properties. The large radius of Ba atom in CBMO suppresses the antiferrodistortive (AFD) mode, and enhances ferroelectricity associated with the FE mode. By comparing the whole different magnetic structures, parameters are further generated for the Heisenberg model and Monte-Carlo simulations are perpormed at finite temperatures. The simulated Néel temperature is 70 K. This study gives a candidate structure for multiferroics applications. In the meantime, it also provides theoretical references to further experimental studies in similar systems.

Key words: first-principle, multiferroics, megnetoelectric coupling effect, antiferrodistortive (AFD) mode, ferroelectric (FE) mode

中图分类号: