Invited Review

Phase transitions and contact engineering in two-dimensional transition metal dichalcogenides:mechanisms, methods, and frontier advances

  • YIN Xinmao ,
  • CHEN Pan ,
  • GAO Canfei ,
  • LI Gui
Expand
  • Shanghai Key Laboratory of High Temperature Superconductors, College of Sciences, Shanghai University, Shanghai 200444, China

Received date: 2025-03-07

  Online published: 2025-07-22

Abstract

The Fermi level pinning effect at the interface between two-dimensional transition metal dichalcogenides(TMDs) and metals severely limits carrier transport efficiency.Phase transition engineering in 2D TMDs offers a breakthrough strategy for improving metal-semiconductor contacts. This work elucidates the physical mechanisms of phase transitions, revealing that lattice symmetry breaking(2H→1T/1T) synergistically optimizes three critical functionalities by reconfiguring interfacial electronic states and atomic arrangements:(1) suppression of metal-induced gap states(MIGS),(2) modulation of band alignment, and(3) construction of atomically smooth interfaces. Systematic strategies for phase transition control are explored, including charge doping, external field stimuli, and thermodynamic regulation. Atomic intercalation stabilizes metallic phases by tailoring orbital electron filling, while external fields(optical, electrical, or strain) trigger lattice reconstruction through energy-momentum coupling. Alloying and thermodynamic synthesis enable spatially controlled growth of heterophases via energy barrier engineering. These approaches establish multiscale correlations among electronic states, lattice ordering, and interfacial transport, providing theoretical foundations for high-efficiency contacts in lowdimensional devices. Future challenges lie in achieving atomic-scale resolution of dynamic phase transitions, enhancing heterophase interfacial stability, and developing cross-scale integration processes. Addressing these issues will require multidisciplinary efforts to advance 2D electronic devices from fundamental innovation toward high-density integrated circuits.

Cite this article

YIN Xinmao , CHEN Pan , GAO Canfei , LI Gui . Phase transitions and contact engineering in two-dimensional transition metal dichalcogenides:mechanisms, methods, and frontier advances[J]. Journal of Shanghai University, 2025 , 31(3) : 383 -402 . DOI: 10.12066/j.issn.1007-2861.2681

References

[1] Schaller R R. Moore's law:past, present and future[J]. IEEE Spectrum, 1997, 34(6):52-59.
[2] Lundstrom M. Moore's law forever?[J]. Science, 2003, 299(5604):210-211.
[3] Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2017, 2(8):17033.
[4] Allain A, Kang J H, Banerjee K, et al. Electrical contacts to two-dimensional semiconductors[J]. Nature Materials, 2015, 14(12):1195-1205.
[5] Wang Y, Chhowalla M. Making clean electrical contacts on 2D transition metal dichalcogenides[J]. Nature Reviews Physics, 2021, 4(2):101-112.
[6] Voiry D, Mohite A, Chhowalla M. Phase engineering of transition metal dichalcogenides[J]. Chemical Society Reviews, 2015, 44(9):2702-2712.
[7] Yin X, Tang C S, Zheng Y, et al. Recent developments in 2D transition metal dichalcogenides:phase transition and applications of the (quasi-)metallic phases[J]. Chemical Society Reviews, 2021, 50(18):10087-10115.
[8] Duerloo K A N, Li Y, Reed E J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers[J]. Nature Communications, 2014, 5:4214.
[9] Kuc A, Heine T. The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic flelds[J]. Chemical Society Reviews, 2015, 44(9):2603-2614.
[10] Xu M, Liang T, Shi M, et al. Graphene-like two-dimensional materials[J]. Chemical Reviews, 2013, 113(5):3766-3798.
[11] Nevill Francis Mott. The theory of crystal rectiflers[J]. Proceedings of the Royal Society of London Series A:Mathematical and Physical Sciences, 1939, 171(944):27-38.
[12] Schottky W. Zur halbleitertheorie der sperrschicht- und spitzengleichrichter[J]. Zeitschrift für Physik, 1939, 113(5):367-414.
[13] Bardeen J. Surface states and rectiflcation at a metal semi-conductor contact[J]. Physical Review, 1947, 71(10):717-727.
[14] Kim C, Moon I, Lee D, et al. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides[J]. ACS Nano, 2017, 11(2):1588-1596.
[15] Liu X, Choi M S, Hwang E, et al. Fermi level pinning dependent 2D semiconductor devices:challenges and prospects[J]. Advanced Materials, 2022, 34(15):2108425.
[16] Gong C, Colombo L, Wallace R M, et al. The unusual mechanism of partial Fermi level pinning at metal{MoS2 interfaces[J]. Nano Letters, 2014, 14(4):1714-1720.
[17] Das S, Chen H Y, Penumatcha A V, et al. High performance multilayer MoS2 transistors with scandium contacts[J]. Nano Letters, 2013, 13(1):100-105.
[18] Wang Y, Kim J C, Wu R J, et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors[J]. Nature, 2019, 568(7750):70-74.
[19] Shen P C, Su C, Lin Y, et al. Ultralow contact resistance between semimetal and monolayer semiconductors[J]. Nature, 2021, 593(7858):211-217.
[20] Li W, Gong X, Yu Z, et al. Approaching the quantum limit in two-dimensional semiconductor contacts[J]. Nature, 2023, 613(7943):274-279.
[21] Liu Y, Guo J, Zhu E, et al. Approaching the Schottky{Mott limit in van der Waals metal{ semiconductor junctions[J]. Nature, 2018, 557(7707):696-700.
[22] Jain A, Szabó Á, Parzefall M, et al. One-dimensional edge contacts to a monolayer semiconductor[J]. Nano Letters, 2019, 19(10):6914-6923.
[23] Wang J, Yao Q, Huang C W, et al. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer[J]. Advanced Materials, 2016, 28(37):8302-8308.
[24] Ouyang B, Xiong S, Jing Y. Tunable phase stability and contact resistance of monolayer transition metal dichalcogenides contacts with metal[J]. npj 2D Materials and Applications, 2018, 2(1):13.
[25] Schulman D S, Arnold A J, Das S. Contact engineering for 2D materials and devices[J]. Chemical Society Reviews, 2018, 47(9):3037-3058.
[26] Dines M B. Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides[J]. Materials Research Bulletin, 1975, 10(4):287-291.
[27] Py M A, Haering R R. Structural destabilization induced by lithium intercalation in MoS2 and related compounds[J]. Canadian Journal of Physics, 1983, 61(1):76-84.
[28] Kappera R, Voiry D, Yalcin S E, et al. Metallic 1T phase source/drain electrodes for fleld efiect transistors from chemical vapor deposited MoS2 [J]. APL Materials, 2014, 2(9):092516.
[29] Ma Y, Liu B, Zhang A, et al. Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices[J]. ACS Nano, 2015, 9(7):7383-7391.
[30] Lee E K, Abdullah H, Torricelli F, et al. Boosting the optoelectronic properties of molybdenum diselenide by combining phase transition engineering with organic cationic dye doping[J]. ACS Nano, 2021, 15(11):17769-17779.
[31] Nourbakhsh A, Zubair A, Sajjad R N, et al. MoS2 fleld-efiect transistor with sub-10 nm channel length[J]. Nano Letters, 2016, 16(12):7798-7806.
[32] Yu J, Fu J, Ruan H, et al. Tailoring lithium intercalation pathway in 2D van der Waals heterostructure for high-speed edge-contacted floating-gate transistor and artiflcial synapses[J]. InfoMat, 2024, 6(10):e12599.
[33] Lim J, Lee J I, Wang Y, et al. Photoredox phase engineering of transition metal dichalcogenides[J]. Nature, 2024, 633(8028):83-89.
[34] Kochat V, Apte A, Hachtel J A, et al. Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism[J]. Advanced Materials, 2017, 29(43):1703754.
[35] Yang S Z, Gong Y, Manchanda P, et al. Rhenium-doped and stabilized MoS2 atomic layers with basal-plane catalytic activity[J]. Advanced Materials, 2018, 30(51):1803477.
[36] Li S, Hong J, Gao B, et al. Tunable doping of rhenium and vanadium into transition metal dichalcogenides for two-dimensional electronics[J]. Advanced Science, 2021, 8(11):2004438.
[37] Lee H J, Choe M, Yang W, et al. Phase-engineered WS2 monolayer quantum dots by rhenium doping[J]. ACS Nano, 2023, 17(24):25731-25738.
[38] Rhodes D, Chenet D A, Janicek B E, et al. Engineering the structural and electronic phases of MoTe2 through W substitution[J]. Nano Letters, 2017, 17(3):1616-1622.
[39] Zeng Y, Wu S, Xu X, et al. One-step synthesis of two-dimensional metal{semiconductor circuitry based on W-triggered spatial phase engineering[J]. ACS Materials Letters, 2023, 5(9):2324-2331.
[40] Zheng Y, Xiang D, Zhang J, et al. Controlling phase transition in WSe2 towards ideal n-type transistor[J]. Nano Research, 2021, 14(8):2703-2710.
[41] Jiang J, Xu L, Qiu C, et al. Ballistic two-dimensional InSe transistors[J]. Nature, 2023, 616(7957):470-475.
[42] Jiang J, Xu L, Du L, et al. Yttrium-doping-induced metallization of molybdenum disulflde for ohmic contacts in two-dimensional transistors[J]. Nature Electronics, 2024, 7(7):545-556.
[43] Cho S, Kim S, Kim J H, et al. Phase patterning for ohmic homojunction contact in MoTe2[J]. Science, 2015, 349(6248):625-628.
[44] Ryu H, Lee Y, Jeong J H, et al. Laser-induced phase transition and patterning of hBNEncapsulated MoTe2[J]. Small, 2023, 19(17):2205224.
[45] Katagiri Y, Nakamura T, Ishii A, et al. Gate-tunable atomically thin lateral MoS2 Schottky junction patterned by electron beam[J]. Nano Letters, 2016, 16(6):3788-3794.
[46] Zhu J, Wang Z, Yu H, et al. Argon plasma induced phase transition in monolayer MoS2 [J]. Journal of the American Chemical Society, 2017, 139(30):10216-10219.
[47] Sharma C H, Surendran A P, Varghese A, et al. Stable and scalable 1T MoS2 with low temperature-coe-cient of resistance[J]. Scientiflc Reports, 2018, 8:12463.
[48] Cheng Z, He S, Han X, et al. Improving electron mobility in MoS2 fleld-efiect transistors by optimizing the interface contact and enhancing the channel conductance through local structural phase transition[J]. Journal of Materials Chemistry C, 2024, 12(8):2794-2802.
[49] Zhang J, Liu G, Yuan J, et al. Enhanced photoresponse in PdSe2 via local plasma treatment:Implication for advanced optoelectronic devices[J]. ACS Applied Nano Materials, 2025, 8(7):3511-3518.
[50] Xiao M, Wu Z, Liu G, et al. Spatially controlled phase transition in MoTe2 driven by focused ion beam irradiations[J]. ACS Applied Materials & Interfaces, 2024, 16(24):31747-31755.
[51] Chaudhary M, Anbalagan A K, Chuang K W, et al. Phase transition in two-dimensional monolayer (1L)-molybdenum disulflde induced by atomic S-basal plane gliding via synchrotron X-ray monochromatic beam radiation for superior electronic performance[J]. Materials Today, 2025, 84:28-38.
[52] Wang Y, Xiao J, Zhu H, et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping[J]. Nature, 2017, 550(7677):487-491.
[53] Zhang F, Zhang H, Krylyuk S, et al. Electric-fleld induced structural transition in vertical MoTe2 -and Mo1-xWxTe2-based resistive memories[J]. Nature Materials, 2018, 18(1):55-61.
[54] Zakhidov D, Rehn D A, Reed E J, et al. Reversible electrochemical phase change in monolayer to bulk-like MoTe2 by ionic liquid gating[J]. ACS Nano, 2020, 14(3):2894-2903.
[55] He H K, Jiang Y B, Yu J, et al. Ultrafast and stable phase transition realized in MoTe2-based memristive devices[J]. Materials Horizons, 2022, 9(3):1036-1044.
[56] Chi Z H, Zhao X M, Zhang H, et al. Pressure-induced metallization of molybdenum disulflde[J]. Physical Review Letters, 2014, 113(3):036802.
[57] Awate S S, Xu K, Liang J, et al. Strain-induced 2H to 1T0 phase transition in suspended MoTe2 using electric double layer gating[J]. ACS Nano, 2023, 17(22):22388-22398.
[58] Manzanares-Negro Y, Quan J, Rassekh M, et al. Low resistance electrical contacts to few-layered MoS2 by local pressurization[J]. 2D Materials, 2023, 10(2):021003.
[59] Yoo Y, DeGregorio Z P, Su Y, et al. In-plane 2H-1T0 MoTe2 homojunctions synthesized by flux-controlled phase engineering[J]. Advanced Materials, 2017, 29(16):1605461.
[60] Zhang X, Jin Z, Wang L, et al. Low contact barrier in 2H/1T0 MoTe2 in-plane heterostructure synthesized by chemical vapor deposition[J]. ACS Applied Materials & Interfaces, 2019, 11(13):12777-12785.
[61] Ma R, Zhang H, Yoo Y, et al. MoTe2 lateral homojunction fleld-efiect transistors fabricated using flux-controlled phase engineering[J]. ACS Nano, 2019, 13(7):8035-8046.
[62] Yang S, Xu X, Xu W, et al. Large-scale vertical 1T0/2H MoTe2 nanosheet-based heterostructures for low contact resistance transistors[J]. ACS Applied Nano Materials, 2020, 3(10):10411- 10417.
[63] Zhang Q, Wang X F, Shen S H, et al. Simultaneous synthesis and integration of twodimensional electronic components[J]. Nature Electronics, 2019, 2(4):164-170.
[64] Xu X, Liu S, Han B, et al. Scaling-up atomically thin coplanar semiconductor{metal circuitry via phase engineered chemical assembly[J]. Nano Letters, 2019, 19(10):6845-6852.
[65] Song S, Yoon A, Jang S, et al. Fabrication of p-type 2D single-crystalline transistor arrays with Fermi-level-tuned van der Waals semimetal electrodes[J]. Nature Communications, 2023, 14(1):4747.
[66] Wang Y, Zhai W, Ren Y, et al. Phase-controlled growth of 1T0-MoS2 nanoribbons on 1H-MoS2 nanosheets[J]. Advanced Materials, 2024, 36(17):2307269.
[67] Liu X, Shan J, Cao T, et al. On-device phase engineering[J]. Nature Materials, 2024, 23(10):1363-1369.
Outlines

/