Journal of Shanghai University(Natural Science Edition) ›› 2019, Vol. 25 ›› Issue (3): 406-414.doi: 10.12066/j.issn.1007-2861.2136
Special Issue: 精准与转化医学
Previous Articles Next Articles
					
													ZHU Yunhui, ZHOU Xiaofei, YU Luyang(
)
												  
						
						
						
					
				
Received:2019-04-10
															
							
															
							
															
							
																	Online:2019-06-30
															
							
																	Published:2019-06-24
															
						Contact:
								Luyang YU   
																	E-mail:luyangyu@zju.edu.cn
																					CLC Number:
ZHU Yunhui , ZHOU Xiaofei , YU Luyang . Role and mechanism of post-translational SUMOylation in atherosclerosis[J]. Journal of Shanghai University(Natural Science Edition), 2019, 25(3): 406-414.
| [1] |  
											 Benjamin E J, Virani S S . Heart disease and stroke statistics-2018 update: a report from the American Heart Association[J]. Circulation, 2018,135(10):391-414. 
																							 doi: 10.1161/CIR.0000000000000573 pmid: 29555722  | 
										
| [2] |  
											 Libby P, Lichtman A H, Hansson G K . Immune effector mechanismsimplicated in atherosclerosis: from mice to humans[J]. Immunity, 2013,38(6):1092-1104. 
																							 doi: 10.1016/j.immuni.2013.06.009  | 
										
| [3] |  
											 Yin Y, Pastrana J L, Li X , et al. Inflammasomes: sensors ofmetabolic stresses for vascular inflammation[J]. Front Biosci(Landmark Ed), 2013,18:638-649. 
																							 pmid: 23276949  | 
										
| [4] |  
											 Ross R . Atherosclerosis: an inflammatory disease[J]. N Engl JMed, 1999,340(2):115-126. 
																							 doi: 10.1056/NEJM199901143400207 pmid: 9887164  | 
										
| [5] |  
											 Rosenfeld M E . Inflammation and atherosclerosis: direct versusindirect mechanisms[J]. Curr Opin Pharmacol, 2013,13(2):154-160. 
																							 doi: 10.1016/j.coph.2013.01.003  | 
										
| [6] |  
											 Sihag S, Cresci S, Li A Y , et al. PGC-1alpha and ERRalphatarget gene downregulation is a signature of the failing human heart[J]. J Mol Cell Cardiol, 2009,46(2):201-212. 
																							 doi: 10.1016/j.yjmcc.2008.10.025  | 
										
| [7] |  
											 Pandey D, Chen F, Patel A , et al. SUMO1 negatively regulatesreactive oxygen species production from NADPH oxidases[J]. Arterioscler Thromb Vasc Biol, 2011,31(7):1634-1642. 
																							 doi: 10.1161/ATVBAHA.111.226621 pmid: 21527745  | 
										
| [8] |  
											 Woo C H, Abe J . SUMO: a post-translational modification withtherapeutic potential?[J]. Curr Opin Pharmacol, 2010,10(2):146-155. 
																							 doi: 10.1016/j.coph.2009.12.001  | 
										
| [9] |  
											 Gimbrone M A, Garcia-Cardena G . Vascular endothelium,hemodynamics, and the pathobiology of atherosclerosis[J]. Cardiovascular Pathology, 2013,22(1):9-15. 
																							 doi: 10.1016/j.carpath.2012.06.006  | 
										
| [10] |  
											 Libby P, Ridker P M, Hansson G K . Progress and challenges intranslating the biology of atherosclerosis[J]. Nature, 2011,473(7347):317-325. 
																							 doi: 10.1038/nature10146 pmid: 21593864  | 
										
| [11] |  
											 Libby P, Ridker P M, Hansson G K . Inflammation inatherosclerosis: from pathophysiology to practice[J]. J Am CollCardiol, 2009,54(23):2129-2138. 
																							 doi: 10.1016/j.jacc.2009.09.009 pmid: 19942084  | 
										
| [12] |  
											 Liao J K . Linking endothelial dysfunction with endothelialcell activation[J]. J Clin Invest, 2013,123(2):540-541. 
																							 doi: 10.1172/JCI66843  | 
										
| [13] |  
											 Gimbrone M J, Garcia-Cardena G . Endothelial cell dysfunctionand the pathobiology of atherosclerosis[J]. Circ Res, 2016,118(4):620-636. 
																							 doi: 10.1161/CIRCRESAHA.115.306301 pmid: 26892962  | 
										
| [14] |  
											 Chang E, Abe J . Kinase-SUMO networks in diabetes-mediatedcardiovascular disease[J]. Metabolism, 2016,65(5):623-633. 
																							 doi: 10.1016/j.metabol.2016.01.007 pmid: 27085771  | 
										
| [15] |  
											 Hay R T . Decoding the SUMO signal[J]. Biochem Soc Trans, 2013,41:463-473. 
																							 doi: 10.1042/BST20130015 pmid: 23514139  | 
										
| [16] |  
											 Bailey D, O'Hare  P. Characterization of the localization andproteolytic activity of the SUMO-specific protease, SENP1[J]. JBiol Chem, 2004,279(1):692-703. 
																							 doi: 10.1074/jbc.M306195200 pmid: 14563852  | 
										
| [17] |  
											 Sharma P, Yamada S, Lualdi M , et al. Senp1 is essential fordesumoylating Sumo1-modified proteins but dispensable for Sumo2 andSumo3 deconjugation in the mouse embryo[J]. Cell Rep, 2013,3(5):1640-1650. 
																							 doi: 10.1016/j.celrep.2013.04.016 pmid: 23684609  | 
										
| [18] |  
											 Malek A M, Alper S L, Izumo S . Hemodynamic shear stress andits role in atherosclerosis[J]. JAMA, 1999,282(21):2035-2042. 
																							 doi: 10.1001/jama.282.21.2035 pmid: 10591386  | 
										
| [19] |  
											 Nagel T, Resnick N, Dewey C F, Jr , et al. Vascular endothelialcells respond to spatial gradients in fluid shear stress by enhancedactivation of transcription factors[J]. Arterioscler Thromb VascBiol, 1999,19:1825-1834. 
																							 doi: 10.1161/01.atv.19.8.1825 pmid: 10446060  | 
										
| [20] |  
											 Urbich C, Stein M, Reisinger K , et al. Fluid shearstress-induced transcriptional activation of the vascularendothelial growth factor receptor-2 gene requires Sp1-dependent DNA binding[J]. FEBS Lett, 2003,535:87-93. 
																							 doi: 10.1016/s0014-5793(02)03879-6 pmid: 12560084  | 
										
| [21] |  
											 Chiu J J, Chien S . Effects of disturbed flow on vascularendothelium: pathophysiological basis and clinical perspectives[J]. Physiol Rev, 2011,91(1):327-387. 
																							 doi: 10.1152/physrev.00047.2009  | 
										
| [22] |  
											 Heo K S, Chang E, Le N T , et al. De-SUMOylation enzyme ofsentrin/SUMO-specific protease 2 regulates disturbed flow-inducedSUMOylation of ERK5 and p53 that leads to endothelial dysfunctionand atherosclerosis[J]. Circ Res, 2013,112(6):911-923. 
																							 doi: 10.1161/CIRCRESAHA.111.300179  | 
										
| [23] |  
											 Heo K S, Lee H, Nigro P , et al. PKCzeta mediates disturbedflow-induced endothelial apoptosis via p53 SUMOylation[J]. J CellBiol, 2011,193(5):867-884. 
																							 doi: 10.1083/jcb.201010051 pmid: 21624955  | 
										
| [24] |  
											 Heo K S, Le N T, Cushman H J , et al. Disturbed flow-activatedp90RSK kinase accelerates atherosclerosis by inhibiting SENP2function[J]. J Clin Invest, 2015,125(3):1299-1310. 
																							 doi: 10.1172/JCI76453 pmid: 25689261  | 
										
| [25] |  
											 Woo C H, Shishido T, McClain  C, et al. Extracellularsignal-regulated kinase 5 SUMOylation antagonizes shearstress-induced anti-inflammatory response and endothelial nitricoxide synthase expression in endothelial cells[J]. Circ Res, 2008,102(5):538-545. 
																							 doi: 10.1161/CIRCRESAHA.107.156877 pmid: 18218985  | 
										
| [26] |  
											 Nichols T C, Fischer T H, Deliargyris E N , et al. Role ofnuclear factor-kappa B (NF-kappa B) in inflammation, periodontitis,and atherogenesis[J]. Ann Periodontol, 2001,6(1):20-29. 
																							 doi: 10.1902/annals.2001.6.1.20 pmid: 11887466  | 
										
| [27] |  
											 Wang Y, Wang G Z, Rabinovitch P S , et al. Macrophagemitochondrial oxidative stress promotes atherosclerosis and nuclearfactor-$\kappa $B-mediated inflammation in macrophages[J]. CircRes, 2014,114(3):421-433. 
																							 doi: 10.1161/CIRCRESAHA.114.302153 pmid: 24297735  | 
										
| [28] |  
											 Liu B, Mink S, Wong K A , et al. PIAS1 selectively inhibitsinterferon-inducible genes and is important in innate immunity[J]. Nat Immunol, 2004,5:891-898. 
																							 doi: 10.1038/ni1104 pmid: 15311277  | 
										
| [29] |  
											 Liu B, Yang R, Wong K A , et al. Negative regulation ofNF-$\kappa $B signaling by PIAS1[J]. Mol Cell Biol, 2005,25:1113-1123. 
																							 doi: 10.1128/MCB.25.3.1113-1123.2005 pmid: 15657437  | 
										
| [30] |  
											 Lawrence T, Bebien M, Liu G Y , et al. IKK$\alpha $ limitsmacrophage NF-$\kappa $B activation and contributes to theresolution of inflammation[J]. Nature, 2005,434:1138-1143. 
																							 doi: 10.1038/nature03491 pmid: 15858576  | 
										
| [31] |  
											 Hsueh W A, Jackson S, Law R E . Control of vascular cellproliferation and migration by PPAR-gamma: a new approach to themacrovascular complications of diabetes[J]. Diabetes Care, 2001,24:392-397. 
																							 doi: 10.2337/diacare.24.2.392 pmid: 11213897  | 
										
| [32] |  
											 Law R E, Goetze S, Xi X P , et al. Expression and function ofPPARgamma in rat and human vascular smooth muscle cells[J]. Circulation, 2000,101:1311-1318. 
																							 doi: 10.1161/01.cir.101.11.1311 pmid: 10725292  | 
										
| [33] |  
											 Zhang Y, Yang X, Bian F , et al. TNF-$\alpha $ promotes earlyatherosclerosis by increasing transcytosis of LDL across endothelialcells: crosstalk between NF-$\kappa $B and PPAR-$\gamma $[J]. J MolCell Cardiol, 2014,72:85-94. 
																							 doi: 10.1016/j.yjmcc.2014.02.012 pmid: 24594319  | 
										
| [34] |  
											 Pascual G, Fong A L, Ogawa S , et al. A SUMOylation-dependentpathway mediates transrepression of inflammatory response genes byPPAR-gamma[J]. Nature, 2005,437(7059):759-763. 
																							 doi: 10.1038/nature03988 pmid: 16127449  | 
										
| [35] |  
											 Im S S, Osborne T F . Liver x receptors in atherosclerosis andinflammation[J]. Circ Res, 2011,108(8):996-1001. 
																							 doi: 10.1161/CIRCRESAHA.110.226878  | 
										
| [36] |  
											 Calkin A C, Tontonoz P . Liver x receptor signaling pathwaysand atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2010,30:1513-1518. 
																							 doi: 10.1161/ATVBAHA.109.191197 pmid: 20631351  | 
										
| [37] |  
											 Morello F, Saglio E, Noghero A , et al. LXR-activatingoxysterols induce the expression of inflammatory markers inendothelial cells through LXR-independent mechanisms[J]. Atherosclerosis, 2009,207:38-44. 
																							 doi: 10.1016/j.atherosclerosis.2009.04.001 pmid: 19426978  | 
										
| [38] |  
											 Bi X, Song J, Gao J , et al. Activation of liver X receptorattenuates lysophosphatidylcholine-induced IL-8 expression inendothelial cells via the NF-$\kappa $B pathway and SUMOylation[J]. J Cell Mol Med, 2016,20(12):2249-2258. 
																							 doi: 10.1111/jcmm.12903 pmid: 27489081  | 
										
| [39] |  
											 Moore K J, Tabas I . Macrophages in the pathogenesis ofatherosclerosis[J]. Cell, 2011,145(3):341-355. 
																							 doi: 10.1016/j.cell.2011.04.005  | 
										
| [40] |  
											 Oishi Y, Manabe I, Tobe K , et al. SUMOylation of Kruppel-liketranscription factor 5 acts as a molecular switch in transcriptionalprograms of lipid metabolism involving PPAR-delta[J]. Nat Med, 2008,14(6):656-666. 
																							 doi: 10.1038/nm1756 pmid: 18500350  | 
										
| [41] |  
											 Makowski L, Brittingham K C, Reynolds J M , et al. The fattyacidbinding protein, aP2, coordinates macrophage cholesteroltrafficking and inflammatory activity. Macrophage expression of aP2 impacts peroxisome proliferator-activated receptor gamma and IkappaB kinase activities[J]. J Biol Chem, 2005,280(13):12888-12895. 
																							 doi: 10.1074/jbc.M413788200 pmid: 15684432  | 
										
| [42] |  
											 Erbay E, Babaev V R, Mayers J R , et al. Reducing endoplasmicreticulum stress through a macrophage lipid chaperone alleviatesatherosclerosis[J]. Nat Med, 2009,15(12):1383-1391. 
																							 doi: 10.1038/nm.2067 pmid: 19966778  | 
										
| [43] |  
											 Jiang Z, Fan Q, Zhang Z , et al. SENP1 deficiency promotes ERstress-induced apoptosis by increasing XBP1 SUMOylation[J]. CellCycle, 2012,11(6):1118-1122. 
																							 doi: 10.4161/cc.11.6.19529 pmid: 22370484  | 
										
| [44] |  
											 David R . Autophagy: TFEB perfects multitasking[J]. NatureReviews Molecular Cell Biology, 2011,12(7):404. 
																							 doi: 10.1038/nrm3136 pmid: 21673726  | 
										
| [45] |  
											 Sardiello M, Palmieri M, Di Ronza A , et al. A gene networkregulating lysosomal biogenesis and function[J]. Science, 2009,325(5939):473-477. 
																							 doi: 10.1126/science.1174447 pmid: 19556463  | 
										
| [46] |  
											 Miller A J, Levy C, Davis I J , et al. Sumoylation of MITF andits related family members TFE3 and TFEB[J]. J Biol Chem, 2005,280(1):146-155. 
																							 doi: 10.1074/jbc.M411757200 pmid: 15507434  | 
										
| [47] |  
											 Pang Q, Xiong J, Hu X L , et al. UFM1 protects macrophages fromoxLDL-induced foam cell formation through a liver X receptor$\alpha $ dependent pathway[J]. J Atheroscler Thromb, 2015,22(11):1124-1140. 
																							 doi: 10.5551/jat.28829 pmid: 26040753  | 
										
| [48] |  
											 Liu M W, Roubin G S, King S B . Restenosis after coronaryangioplasty. Potential biologic determinants and role of intimalhyperplasia[J]. Circulation, 1989,79(6):1374-1387. 
																							 doi: 10.1161/01.cir.79.6.1374 pmid: 2524293  | 
										
| [49] |  
											 Phillips J W, Barringhaus K G, Sanders J M , et al. Rosiglitazone reduces the accelerated neointima formation afterarterial injury in a mouse injury model of type 2 diabetes[J]. Circulation, 2003,108:1994-1999. 
																							 doi: 10.1161/01.CIR.0000092886.52404.50 pmid: 14517165  | 
										
| [50] |  
											 Mangelsdorf D J, Thummel C, Beato M , et al. The nuclearreceptor superfamily: the second decade[J]. Cell, 1995,83(6):835-839. 
																							 doi: 10.1016/0092-8674(95)90199-x pmid: 8521507  | 
										
| [51] |  
											 Sentis S, Le Romancer M, Bianchin C , et al. Sumoylation of theestrogen receptor alpha hinge region regulates its transcriptionalactivity[J]. Mol Endocrinol, 2005,19(11):2671-2684. 
																							 doi: 10.1210/me.2005-0042 pmid: 15961505  | 
										
| [52] |  
											 Kobayashi S, Shibata H, Yokota K , et al. FHL2, UBC9, and PIAS1are novel estrogen receptor alpha-interacting proteins[J]. EndocrRes, 2004,30(4):617-621. 
																							 doi: 10.1081/erc-200043789 pmid: 15666801  | 
										
| [53] |  
											 Tahk S, Liu B, Chernishof V , et al. Control of specificity andmagnitude of NF-kappa B and STAT1-mediated gene activation throughPIASy and PIAS1 cooperation[J]. Proc Natl Acad Sci U S A, 2007,104(28):11643-11648. 
																							 doi: 10.1073/pnas.0701877104 pmid: 17606919  | 
										
| [1] | PENG Xiang , TIAN Jinwei . Basic and clinic advances of in-stent neoatherosclerosis [J]. Journal of Shanghai University(Natural Science Edition), 2019, 25(3): 399-405. | 
| [2] | KOU Jiayuan1, JIANG Yueqing1, TIAN Ye1,2, YANG Liming1. Application of sonosensitizers derived from Chinese herb products in sonodynamic therapy for atherosclerosis treatment [J]. Journal of Shanghai University(Natural Science Edition), 2016, 22(3): 318-325. | 
| [3] | XU Jiang-bo,WANG Tuo,WENG Xin-chu. Effects of Antioxidant Part of Astragali Radix and Its Combination with Panax notoginseng saponins on Atherosclerosis [J]. Journal of Shanghai University(Natural Science Edition), 2010, 16(3): 327-330. | 
| [4] | HU Dun, CHEN Zhong-Chen, CHEN Yun, WENG Xin-Chu. Effects of PNS on Blood Lipids and mRNA Expression of Vascular Cell Adhesion Molecule-1 in Atherosclerotic Rats [J]. Journal of Shanghai University(Natural Science Edition), 2009, 15(3): 320-325. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||