[1] Hietarinta J, Joshi N, Nijhoff F W. Discrete systems and integrability [M]. Cambridge: Cambridge University Press, 2016. [2] Nijhoff F W. Lax pair for the Adler (lattice Krichever—Novikov) system [J]. Physics Letters A, 2002, 297(1/2): 49-58. [3] Bobenko A I, Suris Y B. Integrable systems on quad-graphs [J] International Mathematics Research Notices, 2002, 11: 573-611. [4] Babelon O, Bernard D, Talon M. Introduction to classical integrable systems [M]. Cambridge: Cambridge University Press, 2003. [5] Konopelchenko B G. Soliton eigenfunction equations: the IST integrability and some properties [J]. Reviews in Mathematical Physics, 1990, 2(4): 399-440. [6] Hirota R. Nonlinear partial difference equations. Ⅰ . a difference analogue of the korteweg-de vries equation [J]. Journal of the Physical Society of Japan, 1977, 43(4): 1424-1433. [7] Nijhoff F W, Quispel G R W, Capel H W. Direct linearization of nonlinear difference-difference equations [J]. Physics Letters A, 1983, 97(4): 125-128. [8] Nijhoff F, Capel H. The discrete Korteweg-de Vries equation [J]. Acta Applicandae Mathematica, 1995, 39(1): 133-158. [9] Adler V E, Bobenko A I, Suris Y B. Classification of integrable equations on quad-graphs. the consistency approach [J]. Communications in Mathematical Physics, 2003, 233(3): 513-543. [10] Shabat A. Dressing chains and lattices [C]//Nonlinearity, Integrability and All That. 2000: 331-342. [11] Zhang C, Peng L Y, Zhang D J. Discrete crum’s theorems and lattice KdV-type equations [J]. Theoretical and Mathematical Physics, 2020, 202(2): 165-182. [12] Ince E L. Ordinary differential equations [M]. Amsterdam: Elsevier, 2008. |