Journal of Shanghai University(Natural Science Edition) ›› 2021, Vol. 27 ›› Issue (2): 236-249.doi: 10.12066/j.issn.1007-2861.2289
• Impact of River Impounding on Material Cycling and Its Ecological Significance in Southwest China • Previous Articles Next Articles
GUAN Tianhao1, LI Xiaodong1, WANG Yiyao1, YANG Mengdi1, CUI Gaoyang1, DING Shiyuan1,2(), ZHANG Xuecheng1
Received:
2021-03-20
Online:
2021-04-30
Published:
2021-04-27
Contact:
DING Shiyuan
E-mail:dingshiyuan@tju.edu.cn
CLC Number:
GUAN Tianhao, LI Xiaodong, WANG Yiyao, YANG Mengdi, CUI Gaoyang, DING Shiyuan, ZHANG Xuecheng. Distribution characteristics, influencing factors and sources of heavy metals in karst deep-water reservoirs: a case study of Longtan Reservoir[J]. Journal of Shanghai University(Natural Science Edition), 2021, 27(2): 236-249.
[1] |
Poff N L, Schmidt J C. How dams can go with the flow[J]. Science, 2016,353(6304):1099-1100.
doi: 10.1126/science.aah4926 pmid: 27609876 |
[2] |
Wang F, Maberly S C, Wang B, et al. Effects of dams on riverine biogeochemical cycling and ecology[J]. Inland Waters, 2018,8(2):130-140.
doi: 10.1080/20442041.2018.1469335 |
[3] |
Winton R S, Calamita E, Wehrli B. Reviews and syntheses: dams, water quality and tropical reservoir stratification[J]. Biogeosciences, 2019,16(8):1657-1671.
doi: 10.5194/bg-16-1657-2019 |
[4] | 韩博平. 中国水库生态学研究的回顾与展望[J]. 湖泊科学, 2010,22(2):151-160. |
Han B P. Reservoir ecology and limnology in China: a retrospective comment[J]. Journal of Lake Science, 2010,22(2):151-160. | |
[5] | Maavara T, Chen Q, Van M K, et al. River dam impacts on biogeochemical cycling[J]. Nature Reviews Earth & Environment, 2020,1(2):103-116. |
[6] | 王雨春, 朱俊, 马梅, 等. 西南峡谷型水库的季节性分层与水质的突发性恶化[J]. 湖泊科学, 2005(1):54-60. |
Wang Y C, Zhu J, Ma M, et al. Thermal stratification and paroxysmal deterioration of water quality in a canyon-reservoir, Southwestern China[J]. Journal of Lake Science, 2005(1):54-60. | |
[7] |
Lawson R, Anderson M A. Stratification and mixing in Lake Elsinore, California: an assessment of axial flow pumps for improving water quality in a shallow eutrophic lake[J]. Water Research, 2007,41(19):4457-4467.
doi: 10.1016/j.watres.2007.06.004 pmid: 17624395 |
[8] | 刘丛强, 汪福顺, 王雨春, 等. 河流筑坝拦截的水环境响应: 来自地球化学的视角[J]. 长江流域资源与环境, 2009,18(4):384-396. |
Liu C Q, Wang F S, Wang Y C, et al. Responses of aquatic environment to river damming: from the geochemical view[J]. Resources and Environment in the Yangtza Basin, 2009,18(4):384-396. | |
[9] | Cui G, Wang B, Xiao J, et al. Water column stability driving the succession of phytoplankton functional groups in karst hydroelectric reservoirs[J]. Journal of Hydrology, 2021,592:125607. |
[10] | 胡松. 不同水动力下鄱阳湖沉积物重金属吸附-释放的研究[D]. 南昌: 南昌大学, 2020. |
Hu S. Adsorption and release of heavy metals in sediments of Poyang Lake under different hydrodynamic forces[D]. Nanchang: Nanchang University, 2020. | |
[11] | 韩贵琳, 刘丛强. 贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征[J]. 地球科学进展, 2005(4):394-406. |
Han G L, Liu C Q. Hydrogeochemistry of rivers in Guizhou Province, China: constraints on crustal weathering in karst terrain[J]. Advances in Earth Sciences, 2005(4):394-406. | |
[12] |
Pu J B, Li J H, Zhang T, et al. Varying thermal structure controls the dynamics of CO$_{2}$ emissions from a subtropical reservoir, South China[J]. Water Research, 2020,178:115831.
doi: 10.1016/j.watres.2020.115831 pmid: 32334180 |
[13] | Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolvedloads[J]. American Journal of Science, 1987,287(5):401. |
[14] | Wu W, Qu S, Nel W, et al. The impact of natural weathering and mining on heavy metal accumulation in the karst areas of the Pearl River basin, China[J]. Science of the Total Environment, 2020,734:139480. |
[15] | 熊燕, 宁增平, 刘意章, 等. 南盘江流域 (云南段) 水系沉积物中重金属含量分布特征及其污染状况评价[J]. 地球与环境, 2017,45(2):171-178. |
Xiong Y, Ning Z P, Liu Y Z, et al. Distribution and pollution evaluation of heavy metals in sediments in the Nanpan River basin (Yunnan section)[J]. Earth and Environment, 2017,45(2):171-178. | |
[16] | Qu S, Wu W, Nel W, et al. The behavior of metals/metalloids during natural weathering: a systematic study of the mono-lithological watersheds in the upper Pearl River basin, China[J]. Science of the Total Environment, 2020,708:134572. |
[17] | 钱进. 龙滩水电站库区水环境保护研究[D]. 南京: 河海大学, 2003. |
Qian J. Research on water environment protection of Longtan Reservoirs[D]. Nanjing: Hohai University, 2003. | |
[18] | 袁热林. 岩溶区龙滩水库溶解无机碳行为研究[D]. 贵阳: 贵州师范大学, 2018. |
Yuan R L. Study on dissolved inorganic carbon behavior of Longtan Rseservoir in karstarea[D]. Guiyang: Guizhou Normal University, 2018. | |
[19] | 张垒. 贵州三座深水水库富营养化特征对比分析研究[D]. 贵阳: 贵州师范大学, 2015. |
Zhang L. Comparative analysis of three deep reservoirs eutrophication characteristics, Guizhou Province[D]. Guiyang: Guizhou Normal University, 2015. | |
[20] | 赵宗权, 张洁, 焦树林, 等. 龙滩水库溶解无机碳来源及变化特征[J]. 山地学报, 2020,38(1):19-30. |
Zhao Z Q, Zhang J, Jiao S L, et al. Sources and variation characteristics of dissolved inorganic carbon in Longtan Reservoir, China[J]. Mountain Research, 2020,38(1):19-30. | |
[21] | 李磊. 西南两座深水水库浮游植物功能群时空分布特征及其对富营养化的响应[D]. 贵阳: 贵州师范大学, 2016. |
Li L. Spatial and temporal distribution characteristics of phytoplankton functional groups and their responses to eutrophication in two deep reservoirs, Southwest China[J]. Guiyang: Guizhou Normal University, 2016. | |
[22] | 瞿书逸. 珠江上游基岩风化成土过程中重金属元素的迁移富集特征及源示踪[D]. 南京: 南京大学, 2020. |
Qu S Y. The behavior analysis and sourcing of heavy metals during weathering and pedogenesis in upper reaches of the Pearl River[D]. Nanjing: Nanjing University, 2020. | |
[23] | Padisák J, Barbosa F, Koschel R, et al. Deep layer cyanoprokaryota maxima in temperate and tropical lakes[M]. Berlin: Advances in Limnology, 2003: 175-199. |
[24] | Becker V, Huszar V L M, Naselli-Flores L, et al. Phytoplankton equilibrium phases during thermal stratification in a deep subtropical reservoir[J]. Freshwater Biology, 2008,53(5):952-963. |
[25] | Zhu K, Bi Y, Hu Z. Responses of phytoplankton functional groups to the hydrologic regime in the Daning River, a tributary of Three Gorges Reservoir, China[J]. Science of the Total Environment, 2013,450:169-177. |
[26] |
Pu J, Li J, Zhang T, et al. Varying thermal structure controls the dynamics of CO$_{2}$ emissions from a subtropical reservoir, South China[J]. Water Research, 2020,178:115831.
pmid: 32334180 |
[27] | 马阔. 西江河水水化学及硫酸根中硫氧稳定同位素地球化学特征研究[D]. 北京: 中国地质大学, 2019. |
Ma K. Water chemistry and sulfur-oxygen isotopes geochemistry characteristics of XijiangRiver[D]. Beijing: China University of Geosciences, 2019. | |
[28] |
Han G L, Tang Y, Wu Q X, et al. Assessing contamination sources by using sulfur and oxygen isotopes of sulfate ions in Xijiang River basin, Southwest China[J]. Journal of Environmental Quality, 2019,48(5):1507-1516.
doi: 10.2134/jeq2019.03.0150 pmid: 31589715 |
[29] | Spence J, Telmer K. The role of sulfur in chemical weathering and atmospheric CO$_{2}$ fluxes: evidence from major ions, $\delta ^{13}$C$_{\rm DIC}$, and $\delta ^{34}$S$_{{\rm SO}_{4}}$ in rivers of the Canadian Cordillera[J]. Geochimica et Cosmochimica Acta, 2005,69(23):5441-5458. |
[30] |
Gao Q, Li Y, Cheng Q, et al. Analysis and assessment of the nutrients, biochemical indexes and heavy metals in the Three Gorges Reservoir, China, from 2008 to 2013[J]. Water Research, 2016,92:262-274.
doi: 10.1016/j.watres.2015.12.055 pmid: 26874779 |
[31] | Wang X, Zhang L, Zhao Z, et al. Heavy metal pollution in reservoirs in the hilly area of Southern China: distribution, source apportionment and health risk assessment[J]. Science of the Total Environment, 2018,634:158-169. |
[32] | 吕红, 杨梦迪, 崔高仰, 等. 高原深水型湖库水体重金属及营养盐耦合关系探究——以乌江构皮滩水库为例[J]. 地球与环境, 2019,47(6):777-785. |
Lü H, Yang M D, Cui G Y, et al. Study on coupling relationship between heavy metals and nutrients in plateau deep-water reservoirs: a case study of the goupitan reservoir in the Wujiang River catchment[J]. Earth and Environment, 2019,47(6):777-785. | |
[33] | 许燕颖, 刘友存, 张军, 等. 赣江上游典型流域水体三氮及重金属空间分布特征与风险评价[J]. 地球与环境, 2020,48(5):574-583. |
Xu Y Y, Liu Y C, Zhang J, et al. Spatial distribution and risk assessment of nitrogen and heavy metals in typical watershed of the upper reaches of Ganjiang River[J]. Earth and Environment, 2020,48(5):574-583. | |
[34] | 肖雄. 贵州阿哈水库重金属时空变化特征及潜在生态风险评价[D]. 贵阳: 贵州师范大学, 2019. |
Xiao X. Spatial-temporal variation characteristics and potential ecological risk assessment of heavy metals in Aha Reservoir, Guizhou Province[D]. Guiyang: Guizhou Normal University, 2019. | |
[35] | 吕红. 贵州阿哈水库水体及悬浮物重金属来源与迁移特征研究[D]. 天津: 天津大学, 2019. |
Lü H. Study on sources and migration characteristics of heavy metals in water and suspended particulates of Aha Reservoir, Guizhou Province[D]. Tianjin: Tianjin University, 2019. | |
[36] | 黄秋燕, 胡宝清, 曾令锋. 红水河梯级电站喀斯特库区土地利用与景观格局变化研究[J]. 资源科学, 2009,31(10):1805-1814. |
Huang Q Y, Hu B Q, Zeng L F. Land use/cover and landscape pattern changes over the karst reservoir area of the red river[J]. China Resources Science, 2009,31(10):1805-1814. | |
[37] | Tuttle M L W, Breit G N, Goldhaber M B. Weathering of the New Albany Shale, Kentucky: II. Redistribution of minor and trace elements[J]. Applied Geochemistry, 2009,24(8):1565-1578. |
[38] | Paikaray S. Environmental hazards of arsenic associated with black shales: a review on geochemistry, enrichment and leaching mechanism[J]. Reviews in Environmental Science and Bio/Technology, 2012,11(3):289-303. |
[39] | Li Z, Ma Z, Van D K T J, et al. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment[J]. Science of the Total Environment, 2014,468:843-853. |
[40] | 何应, 李秋华, 唐黎, 等. 贵州红枫水库沉积物重金属污染评价及来源分析[J]. 生态学杂志, 2019,38(3):799-809. |
He Y, Li Q H, Tang L, et al. Evaluation and source analysis of heavy metal pollution in sediments of Hongfeng Reservoir in Guizhou Province, China[J]. Chinese Journal of Ecology, 2019,38(3):799-809. | |
[41] | 蒋翠婷. 铁 (氢) 氧化物-壳聚糖改性铝污泥吸附水中重金属的研究[D]. 西安: 长安大学, 2019. |
Jiang C T. Adsorption of heavy metals from aqueous solution by iron (hydrogen) oxide-chitosan modified aluminum sludge[D]. Xi'an: Chang'an University, 2019. | |
[42] | 张秀英. 多聚体 Fe(Ⅲ)-氢氧化物吸附水中 As(Ⅴ) 的理论研究[D]. 昆明: 昆明理工大学, 2018. |
Zhang X Y. Theory research on the adsorption of As(V) from aqueous solution by polumer Fe(III)-oxyhydroxides[D]. Kunming: Kunming University of Science and Technology, 2018. | |
[43] | Xie X, Wang Y, Pi K, et al. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: experimental study[J]. Science of the Total Environment, 2015,527:38-46. |
[44] |
Kleinübing S J, Da-Silva E A, Da-Silva M G C, et al. Equilibrium of Cu(II) and Ni(II) biosorption by marine alga Sargassum filipendula in a dynamic system: competitiveness and selectivity[J]. Bioresource Technology, 2011,102(7):4610-4617.
doi: 10.1016/j.biortech.2010.12.049 pmid: 21295972 |
[45] | 范吉辉. 红水河梯级电站浮游生物种群结构分析[D]. 南宁: 广西大学, 2014. |
Fan J H. Analysis of plankton community structure in the cascade hydropower stations on the Hongshui River[D]. Nanning: Guangxi University, 2014. | |
[46] | 王颖, 唐艳葵 Saktikoun T, , 等. 水生植物腐解过程对水中重金属迁移转化影响的研究进展[J]. 环境污染与防治, 2017,39(7):794-797. |
Wang Y, Tang Y K, Saktikoun T, et al. Effects of decomposition process of aquatic plants on the fate of heavy metals in water: a review[J]. Environmental Pollution & Control, 2017,39(7):794-797. | |
[47] | Noori R, Ansari E, Bhattarai R, et al. Complex dynamics of water quality mixing in a warm mono-mictic reservoir[J]. Science of the Total Environment, 2021,777:146097. |
[1] | LIANG Xia, LI Binbin, SUN Yiqi, ZHANG Wenjing, LI Weiping. Effects of diurnal variation of dissolved oxygen on nitrous oxide production and nitrogen cycling in lake sediments [J]. Journal of Shanghai University(Natural Science Edition), 2018, 24(4): 592-601. |
[2] | GUAN Tianhao, LI Xiaodong, WANG Yiyao, YANG Mengdi, CUI Gaoyang, DING Shiyuan, ZHANG Xuecheng. Distribution characteristics, influencing factors and sources of heavy metals in karst deep-water reservoirs: A case study of Longtan Reservoir [J]. Journal of Shanghai University(Natural Science Edition), 0, (): 1-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||