[1] 春玲, 双叶. 协同s-凸函数的Hermite-Hadamard 型积分不等式[J]. 内蒙古民族大学学报, 2013, 28(6): 627-630.
[2] 何晓红, 许谦. AH凸函数的几个积分不等式及其应用[J]. 上海大学学报(自然科学版), 2014, 20(3): 368-373.
[3] Dragomir S S. Hermite-Hadamard inequalities for operator convex functions [J]. Applied Mathematics and Computation, 2011, 218(3): 766-772.
[4] Chen F X, Feng Y M. New inequalities of Hermite-Hadamard type for functions whose first derivatives absolute values are s-convex [J]. Italian Journal of Pure and Applied Mathematics, 2014, 32: 213-222.
[5] Li S J, Zhao L Z, Leng G S. Inequalities for T-convex functions [J]. Journal of Shanghai University (English Edition), 2007, 11(2): 142-147.
[6] Breckner W W. Stetigkeitsaussagen für eine klasse verallgemeinerter konvexer funktionen in topologischen Räumen [J]. Publications of the Institute for Mathematical, 1978, 23: 13-20.
[7] Toader G. Some generalizations of the convexity [C]//Proceedings of the Colloquium on Approximation and Optimization. 1984: 329-338.
[8] Mihesan V G. A generalization of the convexity, seminar on functionar on functional equations [M]. Romania: Approximation and Convexity, Cluj-Napoca, 1993.
[9] Chun L, Qi F. Integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex [J]. Journal of Inequalities and Applications, 2013, DOI: 10.1186/1029-242X-2013-451.
[10] Özdemir M E, Yildiz Ǹ , Akdemir A O, et al. On some inequalities for s-convex functions and applications [J]. Journal of Inequalities and Applications, 2013, DOI: 10.1186/1029-242X-2013-333.
[11] Özdemir M E, Avci M, Set E. On some inequalities of Hermite-Hadamard type via m-convexity [J]. Applied Mathematics Letters, 2010, 23(9): 1065-1070.
[12] Iscan I. A new generalization of some integral inequalities for (α ,m)-convex functions [J]. Mathematical Sciences, 2013, 7(1): 1-8.
[13] Wang S H, Xi B Y, Qi F. On Hermite-Hadamard type inequalities for (α ,m)-convex functions [J]. International Journal of Open Problems in Computer Science and Mathematics, 2012, 5(4): 47-56.
[14] Özdemir M E, Avci M, Kavurmaci H. Hermite-Hadamard type inequalities via (α ,m)-convexity [J]. Computers and Mathematics with Applications, 2011, 61(9): 2614-2620.
[15] Deng J H, Wang J R. Fractional Hermite-Hadamard inequalities for (α,m)-logarithmically convex functions [J]. Journal of Inequalities and Applications, 2013, DOI: 10.1186/1029-242X-2013-364.
[16] Xi B Y, Bai R F, Qi F. Hermite-Hadamard type inequalities for the m- and (α,m)-geometrically convex functions [J]. Aequationes Mathematicae, 2012, 84(3): 261-269.
[17] Latifa M A, Shoaibb M. Hermite-Hadamard type integral inequalities for differentiable mpreinvex and (α,m)-preinvex functions [J]. Journal of the Egyptian Mathematical Society, 2015, 23(2): 236-241.
[18] 李玉娇, 杜廷松. 推广的(s,m)-GA-凸函数的Simpson 型不等式[J]. 纯粹数学与应用数学, 2015, 31(5): 487-497.
[19] Yang Z Q, Li Y J, Du T S. A generalization of Simpson type inequality via differentiable functions using (s,m)-convex functions [J]. Italian Journal of Pure and Applied Mathematics, 2015, 35: 327-338. |