[1] 张巧玲. 中科院拟定我国核能发展路线图[N]. 科学时报, 2010-12-02.[2] Sergius T. A technology roadmap for generation IV nuclear energy systems [C]// US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum.2002.[3] 徐銤. 我国快堆和第4代先进核能系统[R]. 北京: 中国原子能科学研究院, 2006: 3-4.[4] Thomas B C, Harold A F, Walt P, et al. Fast breeder reactor programs: history and status [R]. Princeton: International Panel on Fissile Materials, 2010.[5] International Atomic Energy Agency (IAEA). Structural materials for liquid metal cooled fast reactor fuel assemblies—operational behaviour [M]. Vienna: IAEA Nuclear Energy Series, 2012.[6] 郁金南. 材料辐照效应[M]. 北京: 化学工业出版社, 2007.[7] 许咏丽. 国产快堆材料与高温钠的相容性研究概况[J]. 核科学与工程, 2008, 28(2): 125-129.[8] Sandhya R, Rao K B S, Mannan S L. Creep-fatigue interaction behaviour of a 15Cr-15Ni, Ti modified austenitic stainless steel as a function of Ti/C ratio and microstructure [J]. Materials Science and Engineering A, 2005, 392: 326-334.[9] Latha S, Mathewa M D, Parameswaran P, et al. Thermal creep properties of alloy D9 stainless steel and 316 stainless steel fuel clad tubes [J]. International Journal of Pressure Vesselsand Piping, 2008, 85: 866-870.[10] Aritra B, Raju S, Divakar R, et al. High temperature heat capacity of alloy D9 using drop calorimetry based enthalpy increment measurements [J]. International Journal of Thermophysics, 2007, 28(1): 97-108.[11] 许咏丽, 李军刚, 王家英. 模拟裂变产物腐蚀对国产不锈钢包壳管室温爆破性能的影响[J]. 核科学工程, 1995, 15(4): 337-344.[12] 许咏丽, 龙斌, 李军刚. 吸氧材料对快堆元件包壳内壁腐蚀的抑制作用[J]. 核科学与工程, 1996, 16(4): 323-330.[13] 许咏丽, 李军刚, 王家英. 氧势对快堆不锈钢包壳管腐蚀行为的影响[J]. 核科学与工程, 1996, 16(3): 250-225.[14] 张金权, 许咏丽. 中国实验快堆奥氏体不锈钢焊接件与钠蒸气的相容性[J]. 原子能科学技术, 2008, 42(7): 606-612.[15] Murugan S, Gopal K A, Chaurasia P K, et al. Development & fabrication of D9 pressurised capsule and material irradiation capsule [R/OL]. [2015-01-05]. http://www.igcar.gov.in/benchmark/Tech/12.tech.pdf.[16] Jojo J, Divakar R, Venkiteswaran C N, et al. Performance assessment of MOX fuel with 20% cold-worked alloy D9 cladding and wrapper irradiated in FBTR [C]// International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios. 2013:1-22.[17] Randle V. Twinning-related grain boundary engineering [J]. Acta Mater, 2004, 52: 4067-4081.[18] Watanabe T. An approach to grain boundary design for strong and ductile polycrystals [J]. Res Mech, 1984, 11: 47-84.[19] Brandon D G. The structure of high-angle grain boundaries [J]. Acta Metall, 1966, 14: 1479-1484.[20] Berger A, Wilbrandt P J, Ernst F, et al. On the generation of new orientations during recrystallization: recent results on the recrystallization of tensile-deformed fcc singlecrystals [J]. Prog Mater Sci, 1988, 32: 1-95.[21] Cayron C. Multiple twinning in cubic crystals: geometric/algebraic study and its application for the identification of the 3n grain boundaries [J]. Acta Cryst A, 2007, 63: 11-29.[22] Xia S, Zhou B X, Chen W J. Grain cluster microstructure and grain boundary character distribution in alloy 690 [J]. Metall Mater Trans A, 2009, 40: 3016-3030.[23] Lin P, Palumbo G, Erb U. Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600 [J]. Scripta Metall Mater, 1995, 33: 1387-1392.[24] Lehockey E M, Limoges D, Palumbo G, et al. On improving the corrosion and growth resistance of positive Pb-acid battery grids by grain boundary engineering [J]. J Power Sources,1999, 78: 79-83.[25] Lehockey E M, Palumbo G. On the creep behaviour of grain boundary engineered nickel [J].Materials Science and Engineering: A, 1997, 237(2):168-172.[26] Shimada M, Kokawa H, Wang Z J, et al. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundaryengineering [J]. Acta Mater, 2002, 50(9): 2331-2341.[27] Kumar M, Schwartz A J, King W E. Intergranular degradation assessment via random grain boundary network analysis: US, NO09/780, 089 [P]. 2001-02-09.[28] Duh T S, Kai J J, Chen F R. Effects of grain boundary misorientation on solute segregation in thermally sensitized and proton-irradiated 304 stainless steel [J]. J Nucl Mater, 2000, 283: 198-204.[29] Sumantra M, Bhaduri A K, Subramanya S V. One-step and iterative thermo-mechanical treatments to enhance 3n boundaries in a Ti-modified austenitic stainless steel [J]. J MaterSci, 2011, 46: 275-284.[30] Johnston W G, Rosolowsk J H, Turkalo A M, et al. Journal of nuclear materials [J]. J Nucl Mater, 1973, 48(3): 330-338.[31] Josh K, Eftink B P, Cui B, et al. Dislocation interactions with grain boundaries [J]. Current Opinion in Solid State and Materials Science, 2014, 18: 227-243.[32] Sekine M, Sakaguchi N, Endo M, et al. Grain boundary engineering of austenitic steel PNC316 for use in nuclear reactors [J]. J Nucl Mater, 2011, 414: 232-236.[33] Lim Y S, Kim J S, Kim H P, et al, The effect of grain boundary misorientation on the intergranular M23C6 carbide precipitation in thermally treated alloy 690 [J]. J Nucl Mater, 2004,335: 108-114.[34] Li H, Xia S, Zhou B X, et al. The dependence of carbide morphology on grain boundary character in the highly twinned alloy 690 [J]. J Nucl Mater, 2010, 399: 108-113.[35] Edward M L, Gino P, Lin P K Y, et al. Metallurgical process for manufacturing electrowinning lead alloy electrodes: US, 09/127,715 [P]. 1998-10-03.[36] Lehockey E M, Palumbo G, Lin P K Y, et al. Metallurgical method for processing nickel-and iron-based superalloys: US, 1007745 [P]. 2000-06-14.[37] 夏爽, 周邦新, 陈文觉, 等. 提高690 合金材料耐腐蚀性能的工艺方法: 中国, 100400700 [P]. 2008-07-09.[38] Guyot B M, Richards N L. A study on the effect of cold rolling and annealing on special grain boundary fractions in commercial-purity nickel [J]. Mat Sci Eng A, 2005, 395(1/2): 87-97.[39] Liu T G, Xia S, Li H, et al. The highly twinned grain boundary network formation during grain boundary engineering [J]. Materials Letters, 2014, 133: 97-100.[40] Liu T G, Xia S, Li H, et al. Effect of the pre-existing carbides on the grain boundary network during grain boundary engineering in a nickel based alloy [J]. Materials Characterization, 2014, 91: 89-100.[41] Liu T G, Xia S, Li H, et al. Effect of initial grain size on the grain boundary network during grain boundary engineering in alloy 690 [J]. Journal of Materials Research, 2013, 28: 1165-1176. |