[1] 高振良, 孙小凡, 刘育强, 等. 航天器在轨延寿服务发展现状与展望[J]. 航天器工程, 2022, 31(4): 98-107. [2] 谭启成. 空间非合作目标视觉位姿估计研究[D]. 哈尔滨: 哈尔滨工业大学, 2024. [3] 刘付成, 韩飞, 孙玥, 等. 在轨服务航天器的制导、 导航与控制关键技术[J]. 中国惯性技术学报, 2023, 31(9): 849-860; 869. [4] 郭素婕. 面向在轨服务的非合作目标识别与相对位姿测量技术研究[D]. 上海: 中国科学院大学(中国科学院微小卫星创新研究院), 2023. [5] 胡海东, 杜航, 王殿佑, 等. 空间非合作目标特征提取与运动测量方法[J]. 中国科学: 物理学力学天 文学, 2022, 52(1): 114-123. [6] 张杜祥, 刘成. 一种基于双目视觉的立方星位姿参数估计算法[J]. 空间控制技术与应用, 2023, 49(6): 28-37. [7] De Jongh W C, Jordaan H W, Van Daalen C E. Experiment for pose estimation of uncooperative space debris using stereo vision [J]. Acta Astronautica, 2020, 168: 164-173. [8] 冯田, 冯志辉, 南亚明, 等. 基于激光雷达的非合作航天器姿态测量[J]. 传感器与微系统, 2024, 43(2): 139-142; 147. [9] Simpsi A, Roggerini M, Cannici M, et al. 6 DoF pose regression via difierentiable rendering [C]// International Conference on Image Analysis and Processing. 2022: 645-656. [10] 金泽明, 汪玲, 刘柯, 等. 联合EKF和EKPF的空间非合作目标单目位姿估计[J]. 宇航学报, 2021, 42(7): 907-916. [11] Guo M, Chen Y, Liang B, et al. Fast recognition and pose estimation algorithm for space cooperative target via mono-vision [J]. Journal of Physics: Conference Series, 2022, 2405(1): 012021. [12] Long C, Hu Q. Monocular-vision-based relative pose estimation of noncooperative spacecraft using multicircular features [J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 5403- 5414. [13] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation [C]// Medical Image Computing and Computer-Assisted Intervention|MICCAI 2015: 18th International Conference. 2015: 234-241. [14] Fan D P, Ji G P, Zhou T, et al. PraNet: parallel reverse attention network for polyp segmentation [C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. 2020: 263-273. [15] Bui N T, Hoang D H, Nguyen Q T, et al. MEGANet: multi-scale edge-guided attention network for weak boundary polyp segmentation [C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2024: 7985-7994. [16] Von Gioi R G, Randall G. A sub-pixel edge detector: an implementation of the Canny/Devernay algorithm [J]. Image Processing on Line, 2017, 7: 347-372. [17] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778. [18] Gao S H, Cheng M M, Zhao K, et al. Res2Net: a new multi-scale backbone architecture [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(2): 652-662. [19] Howard A, Sandler M, Chu G, et al. Searching for MobileNetV3[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 1314-1324. [20] Cui Z, Qi G J, Gu L, et al. Multitask AET with orthogonal tangent regularity for dark object detection [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 2553-2562. [21] Margolin R, Zelnik-Manor L, Tal A. How to evaluate foreground maps? [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014: 248-255. [22] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// Proceedings of the European Conference on Computer Vision. 2018: 801-818. |