[1] Cui Z, Sheng H, Yang D, et al. Light field depth estimation for non-lambertian objects via adaptive cross operator[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(2):1199-1211. [2] Chao W, Wang X, Wang Y, et al. Learning sub-pixel disparity distribution for light field depth estimation[J]. IEEE Transactions on Computational Imaging, 2023, 9:1126-1138. [3] Yang D, Cui Z, Sheng H, et al. An occlusion and noise-aware stereo framework based on light field imaging for robust disparity estimation[J]. IEEE Transactions on Computers, 2023, 73(3):764-777. [4] Chen Y, Jiang G, Yu M, et al. Learning zero-shot dense light field reconstruction from heterogeneous imaging[J]. Information Fusion, 2024, 103:102088. [5] Kwon K H, Erdenebat M U, Kim N, et al. Image quality enhancement of 4D light field microscopy via reference impge propagation-based one-shot learning[J]. Applied Intelligence, 2023, 53(20):23834-23852. [6] Piao Y, Jiang Y, Zhang M, et al. PANet:patch-aware network for light field salient object detection[J]. IEEE Transactions on Cybernetics, 2021, 53(1):379-391. [7] Zhang M, Ji W, Piao Y, et al. LFNet:light field fusion network for salient object detection[J]. IEEE Transactions on Image Processing, 2020, 29:6276-6287. [8] Ma J, Li Z, Cheng J, et al. Light field image super-resolution based on dual learning and deep Fourier channel attention[J]. Optics Letters, 2024, 49(11):2886-2889. [9] Zhou S, Hu L, Wang Y, et al. AIF-LFNet:all-in-focus light field super-resolution method considering the depth-varying defocus[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(8):3976-3988. [10] Wang Y, Wang L, Wu G, et al. Disentangling light fields for super-resolution and disparity estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(1):425-443. [11] Zhang S, Chang S, Lin Y. End-to-end light field spatial super-resolution network using multiple epipolar geometry[J]. IEEE Transactions on Image Processing, 2021, 30:5956-5968. [12] Liu G, Yue H, Wu J, et al. Efficient light field angular super-resolution with sub-aperture feature learning and macro-pixel upsampling[J]. IEEE Transactions on Multimedia, 2022, 25:6588-6600. [13] Jin J, Hou J, Yuan H, et al. Learning light field angular super-resolution via a geometry-aware network[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020:11141-11148. [14] Wanner S, Goldluecke B. Variational light field analysis for disparity estimation and superresolution[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 36(3):606-619. [15] Kalantari N K, Wang T C, Ramamoorthi R. Learning-based view synthesis for light field cameras[J]. ACM Transactions on Graphics, 2016, 35(6):1-10. [16] Shi J, Jiang X, Guillemot C. Learning fused pixel and feature-based view reconstructions for light fields[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:2555-2564. [17] Meng N, Li K, Liu J, et al. Light field view synthesis via aperture disparity and warping confidence map[J]. IEEE Transactions on Image Processing, 2021, 30:3908-3921. [18] Liu G, Yue H, Li K, et al. Adaptive pixel aggregation for joint spatial and angular superresolution of light field images[J]. Information Fusion, 2024, 104:102183. [19] Shi L, Hassanieh H, Davis A, et al. Light field reconstruction using sparsity in the continuous Fourier domain[J]. ACM Transactions on Graphics, 2014, 34(1):12-24. [20] Wu G, Zhao M, Wang L, et al. Light field reconstruction using deep convolutional network on EPI[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:6319-6327. [21] Yeung H W F, Hou J, Chen J, et al. Fast light field reconstruction with deep coarse-to-fine modeling of spatial-angular clues[C]//Proceedings of the European Conference on Computer Vision. 2018:137-152. [22] Wu G, Liu Y, Dai Q, et al. Learning sheared EPI structure for light field reconstruction[J]. IEEE Transactions on Image Processing, 2019, 28(7):3261-3273. [23] Honauer K, Johannsen O, Kondermann D. A dataset and evaluation methodology for depth estimation on 4D light fields[M]. Berlin:Springer International Publishing, 2017:19-34. [24] Wanner S, Meister S, Goldluecke B. Datasets and benchmarks for densely sampled 4D light fields[J]. Vision, Modeling & Visualization, 2013, 13:225-226. [25] Wang Y, Liu F, Wang Z, et al. End-to-end view synthesis for light field imaging with pseudo 4DCNN[C]//Proceedings of the European Conference on Computer Vision. 2018:333-348. [26] Jin J, Hou J, Chen J, et al. Deep coarse-to-fine dense light field reconstruction with flexible sampling and geometry-aware fusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(4):1819-1836. [27] Wu G, Liu Y, Fang L, et al. Light field reconstruction using convolutional network on EPI and extended applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(7):1681-1694. [28] Wang Y, Liu F, Zhang K, et al. High-fidelity view synthesis for light field imaging with extended pseudo 4DCNN[J]. IEEE Transactions on Computational Imaging, 2020, 6:830-842. [29] Zhong L, Zong B, Wang Q, et al. Implicit epipolar geometric function based light field continuous angular representation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023:3463-3472. [30] Xia P, Lu Y, Zhang S, et al. Revisiting large kernel convolution for light field image angular super-resolution[C]//2024 IEEE International Conference on Multimedia and Expo. 2024:1-6. |