[1] 余鹰. 多标记学习研究综述[J]. 计算机工程与应用, 2015, 51(17): 20-27. [2] Chen Z, Ren J. Multi-label text classification with latent word-wise label information [J]. Applied Intelligence, 2021, 51: 966-979. [3] Boutell M R, Luo J, Shen X, et al. Learning multi-label scene classification [J]. Pattern Recognition, 2004, 37(9): 1757-1771. [4] Qi G J, Hua X S, Yong R, et al. Correlative multi-label video annotation [C]// Proceedings of the 15th ACM International Conference on Multimedia. 2007: 17-26. [5] Liu S M, Chen J H. A multi-label classification based approach for sentiment classification [J]. Expert Systems with Applications, 2015, 42(3): 1083-1093. [6] Turnbull D, Barrington L, Torres D, et al. Semantic annotation and retrieval of music and sound effects [J]. IEEE Transactions on Audio, Speech and Language Processing, 2008, 16(2): 467-476. [7] Zhang M, Zhou Z. A review on multi-label learning algorithms [J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8): 1819-1837. [8] Zhang M L, Zhou Z H. ML-KNN: a lazy learning approach to multi-label learning [J]. Pattern Recognition, 2007, 40(7): 2038-2048. [9] Furnkranz J, Hullermeier E, Mencia E L, et al. Multilabel classification via calibrated label ranking [J]. Machine Learning, 2008, 73(2): 133-153. [10] Huang J, Li G, Wang S, et al. Multi-label classification by exploiting local positive and negative pairwise label correlation [J]. Neurocomputing, 2017, 257: 164-174. [11] 亢浏越, 黄睿, 孙广玲. 基于类属特征的多标签流形学习分类方法[J]. 上海大学学报(自然科学版), 2021, 27(3): 525-534. [12] Read J, Pfahringer B, Holmes G, et al. Classifier chains for multi-label classification [J]. Machine Learning, 2011, 85(3): 333-359. [13] Kai W S, Chong H L, Wang J. Multilabel classification via co-evolutionary multilabel hypernetwork [J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(9): 2438-2451. [14] Wu B, Lyu S, Hu B G, et al. Multi-label learning with missing labels for image annotation and facial action unit recognition [J]. Pattern Recognition, 2015, 48(7): 2279-2289. [15] Hao X Y, Huang J, Qin F, et al. Multi-label learning with missing features and labels and its application to text categorization [J]. Intelligent Systems with Applications, 2022, 14: 200086. [16] Zhang L, Cheng Y, Wang Y, et al. Feature-label dual-mapping for missing label-specific features learning [J]. Soft Computing, 2021, 25(14): 9307-9323. [17] Zhu Y, Kwok J T, Zhou Z H. Multi-label learning with global and local label correlation [J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(6): 1081-1094. [18] Huang J, Qin F, Zheng X, et al. Improving multi-label classification with missing labels by learning label-specific features [J]. Information Sciences, 2019, 492: 124-146. [19] Cheng Z, Zeng Z. Joint label-specific features and label correlation for multi-label learning with missing label [J]. Applied Intelligence, 2020, 50(11): 4029-4049. [20] Kumar S, Rastogi R. Low rank label subspace transformation for multi-label learning with missing labels [J]. Information Sciences, 2022, 596: 53-72. [21] Wang Y, Zheng W, Cheng Y, et al. Two-level label recovery-based label embedding for multi-label classification with missing labels [J]. Applied Soft Computing, 2021, 99(6): 106868. [22] Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering [J]. Advances in Neural Information Processing Systems, 2001, 14(6): 585-591. [23] Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems [J]. IEEE Transactions on Image Processing, 2009, 18(11): 2419-2434. [24] Gibaja E L, Ventura S. A tutorial on multi-label learning [J]. ACM Computing Surveys, 2015, 47(3): 1-38. [25] Tsoumakas G, Katakis I, Vlahavas I. Mining multi-label data [M]//Maimon O, Rokach L. Data mining and knowledge discovery handbook, Boston: Springer, 2010: 667-685. [26] Huang J, Li G, Huang Q, et al. Learning label-specific features and class-dependent labels for multi-label classification [J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(12): 3309-3323. [27] Demiar J, Schuurmans D. Statistical comparisons of classifiers over multiple data sets [J]. Journal of Machine Learning Research, 2006, 7(1): 1-30. |